Diffusion and Ionic Conduction in Soda-Lime Silicate Glasses and in Alkali Borate Glasses

Article Preview

Abstract:

This paper reviews typical results of tracer diffusion and ionic conduction in soda-lime silicate glass and in single-alkali and mixed-alkali borate glass obtained in our laboratory and published in detail elsewhere. We have studied tracer diffusion of modifier cations and ionic conduction as functions of composition, temperature and, in the case of borate glass, also as function of pressure. We compare tracer diffusion with charge diffusion and in the case of soda-lime glass also with viscosity diffusion. The Haven ratios for soda-lime glass are temperature independent. For sodium borate glass the Haven ratio is almost temperature- and pressure-independent, whereas it decreases significantly with decreasing temperature and increasing pressure for rubidium borate glass. It also decreases with increasing alkali content. We attribute these facts to collective atomic jump events, in which several ions move simultaneously in a string-like or chain-like fashion. We also illustrate the mixed-alkali effect, which was studied by conductivity measurements and by tracer diffusion for mixed sodium-rubidium borate glasses.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

1184-1197

Citation:

Online since:

April 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Vogel, Glass Chemistry, Springer-Verlag, (1985).

Google Scholar

[2] J. E. Shelby, Introduction to Glass Science and Technology, The Royal Society of Chem-istry, RSC paperbacks, (1997).

Google Scholar

[3] R.E. Doremus, Glass Science, Wiley, New York, (1994).

Google Scholar

[4] A. K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press, (1994).

Google Scholar

[5] G. H. Frischat, Ionic Diffusion in Oxide Glasses, Trans Tech Publication, Aedermannsdorf, Diffusion and Defect Monograph Series, (1975).

Google Scholar

[6] M. D. Ingram, Phys. Chem. Glasses 28, 215 (1987).

Google Scholar

[7] H. Jain, C. H. Hsieh, Diffusion in Oxide Glasses, in: Diffusion in Semiconductors and in Non-metallic Solids, D. L. Beke (Vol. Ed. ), Landolt-Börnstein, New Series, Group III: Condensed Matter, Vol. 33, Subvolume B1, Springer-Verlag, (1999).

DOI: 10.1007/10542761_14

Google Scholar

[8] H. Mehrer, Diffusion in Solids - Fundamentals, Methods, Materials, Diffusion-Controlled Processes, Springer-Verlag, (2007).

Google Scholar

[9] J. Philibert, Atom Movement – Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis, Cedex A, France, (1991).

Google Scholar

[10] K. Funke, R. D. Banhatti, S. Brückner, C Cramer, C. Krieger, A. Mandanici, C. Martiny, I. Ross, Phys. Chem. Chem. Phys. 4, 3155 (2002).

DOI: 10.1039/b200122p

Google Scholar

[11] H. Mehrer, A.W. Imre, E. Tanguep-Njiokep, J. of Physics: Conference Series 106, 012001 (2008).

Google Scholar

[12] E. Tanguep-Nijokep, H. Mehrer, Solid State Ionics 177, 2839 – 2844 (2006).

Google Scholar

[13] E. Tanguep-Nijokep, H. Mehrer, A.W. Imre, J. Non-Cryst. Solids 354, 355 – 359 (2008).

Google Scholar

[14] S. Voß, F. Berkemeier, A. W. Imre, H. Mehrer, Z. für Physikalische Chemie 218, 1353 (2004).

Google Scholar

[15] S. Voß, A. W. Imre, H. Mehrer, Physical Chemistry Chemical Physics 6, 3669 (2004).

Google Scholar

[16] S. Voß, S. V. Divinski, A.W. Imre, H. Mehrer, J. N. Mundy, Solid State Ionics 176, 1383 - 1391 (2005).

DOI: 10.1016/j.ssi.2005.03.007

Google Scholar

[17] A.W. Imre, S. Voß, H. Mehrer, Phys. Chem. Chem. Phys. 4, 3219 - 3224 (2002).

Google Scholar

[18] A.W. Imre, S. Voß, H. Mehrer, J. Non-Cryst. Solids 333, 231 - 239 (2004).

Google Scholar

[19] A. W. Imre, S. Voß, H. Mehrer, Defect and Diffusion Forum 237 – 240, 370 (2005).

Google Scholar

[20] A.W. Imre, S. Divinski, S. Voß, F. Berkemeier, H. Mehrer, J. Non-Cryst. Solids 352, 783 - 788 (2006).

DOI: 10.1016/j.jnoncrysol.2006.02.008

Google Scholar

[21] F. Berkemeier, S. Voß, A.W. Imre, H. Mehrer, J. Non-Cryst. Solids 351, 3816 - 3825 (2005).

Google Scholar

[22] J. D. Epping, H. Eckert, A. W. Imre, H. Mehrer, J. Non-Cryst. Solids 351, 3521 - 3529 (2005).

DOI: 10.1016/j.jnoncrysol.2005.08.034

Google Scholar

[23] H. Mehrer, A. W. Imre, S. Voß, in: CIMTEC 2002 -3rd Forum on New Materials, 2nd Int. Conf. on: Mass and Charge Transport in Inorganic Materials, P. Vincencini, V. Buscaglia (Eds. ), Techna Srl, Faenza, 127 - 138 (2003).

Google Scholar

[24] H. Mehrer, Z. Physikalische Chemie 223, 1143 – 1160 (2009).

Google Scholar

[25] A. W. Imre, H. Staesche, S. Voß, M. D. Ingram, K. Funke, H. Mehrer, J. Phys. Chem. B 111, 5301 -5307 (2007).

DOI: 10.1021/jp070478q

Google Scholar

[26] A. W. Imre, H. Staesche, S. Voß, M. D. Ingram, K. Funke, H. Mehrer, J. Phys. Chem. B 111, 5301 - 5307 (2007).

DOI: 10.1021/jp070478q

Google Scholar

[27] C. Donati et al., String-like cooperative motion in a supercooled liquid, Phys. Rev. Lett. 80, 2338 - 2341 (1998).

Google Scholar

[28] H. Teichler, J. Non-cryst. Solids 293, 339 (2001).

Google Scholar

[29] H. Zhang, D. J. Srolovitz, J. F. Douglas, J. A. Warren, Grain boundaries exhibit the dynamics of glass-forming liquids, PNAS 106, 7735 - 7740 (2009).

DOI: 10.1073/pnas.0900227106

Google Scholar

[30] R. J. Charles, J. Amer. Ceram. Soc. 48, 432 (1965).

Google Scholar

[31] Y. Gao, C. Cramer, Solid State Ionics 176, 921 (2005).

Google Scholar

[32] K. K. Estrop'ev, V. K. Pavlovski, in: Structure of Glass, E.A. Porai-Koshits (Ed. ), Vol. 7, Consultant Bureau, New York, (1966).

Google Scholar

[33] G. L. McVay, D. E. Day, J. Amer. Ceram. Soc. 53, 508 (1966).

Google Scholar

[34] J. W. Fleming, D. E. Day, J. Amer. Ceram. Soc. 55, 186 (1972).

Google Scholar

[35] R. Terai, J. Non-Cryst. Solids 5, 121 (1971).

Google Scholar

[36] H. Jain, N. L. Peterson, H. L. Downing, J. Non-Cryst. Solids 55, 2183 (1985).

Google Scholar

[37] W. Dieterich, P. Maass, Chem. Physics 284, 439 (2002).

Google Scholar

[38] A. Bunde, W. Dieterich, P. Maass, M. Meyer, Ionic Transport in Disordered Materials, Ch. 20 in: Diffusion in Condensed Matter - Methods, Materials, Models, P. Heitjans, J. Kärger (Eds. ), Springer-Verlag, (2005).

DOI: 10.1007/3-540-30970-5_20

Google Scholar

[39] G. E. Murch, Diffusion Kinetics in Solids, Ch. 3 in: Phase Transformations in Materials, G. Kostorz (Ed. ), Wiley VCh Verlag GmbH, Weilheim, Germany, (2001).

Google Scholar