Hydrodynamic Simulation of Drift Mobility in N-Hg0.8Cd0.2Te

Article Preview

Abstract:

In this paper, the transport properties of Hg0.8Cd0.2Te have been investigated at 77 K using the hydrodynamic model. We remarked that ionized impurity scattering mechanism plays a dominant role in this material at low electric field. The drift velocity, mean energy and drift mobility are determined as functions of the electric field strength. Comparison is made with Monte Carlo calculations and experimental results. The obtained velocity-field curve is in good agreement with reported experimental data.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

122-126

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] A. Rogalski: Defence Science Journal Vol. 51 (2001), p.5.

Google Scholar

[2] S. Krishnamurthy and A. Sher: J. Appl. Phys. Vol. 75 (1994), p.7904.

Google Scholar

[3] C. Jacoboni and L. Reggiani: Rev. Mod. Phys. Vol. 55 (1983), p.645.

Google Scholar

[4] C. Jacobini and P. Lugli, Springer Verlag, Vienna, (1989).

Google Scholar

[5] D. Chattopadhyay and B. R. Nag: Phys. Rev B. Vol. 12 (1975), p.5676.

Google Scholar

[6] K. Blotekjaer, Transport equations for two-valley semiconductors, IEEE Trans. Electron Devices Vol. 17 (1970), p.38.

DOI: 10.1109/t-ed.1970.16921

Google Scholar

[7] G. Baccarani and M. R. Wordeman: Solid-State Electron Vol. 28 (1985), p.407.

Google Scholar

[8] D. Chen, E.C. Kan, U. Ravaioli, W. -C. Shu, and R. W. Dutton: IEEE Electron Device Letter no. 1 (1992), p.26.

Google Scholar

[9] M. Daoudi, A. Belghachi, L. Varani, and C. Palermo: Eur. Phys. J. B. Vol. 62 (2008), p.15.

Google Scholar

[10] C. Palermo, L. Varani, and J-C. Vaissière: Semicond. Sci. Technol. Vol. 19 (2004), p.443.

Google Scholar

[11] G.L. Hansen, J.L. Schmit, and T. N. Casselman: J. Appl. Phys. Vol. 53 (1982), p.7099.

Google Scholar

[12] B. Gelmont, B. Lund, K. Kim, G.U. Jensen, M. Shur, T.A. Fjeldly: J. Appl. Phys. Vol. 71 (1992), p.4977.

Google Scholar

[13] X.F. Wang, I. C. da Cunha Lima, X. L. Lei, A. Troper: Phys. Rew. B Vol. 58 (1998), p.3529.

Google Scholar

[14] G. Nimtz, R. Dornhaus and B. Schlicht, Springer, Berlin, vol. 98 (1983).

Google Scholar

[15] S. D. Yoo and K. D. Kwack: J. Appl. Phys. Vol. 81 (1997), p.719.

Google Scholar

[16] C. Palermo, L. Varani, J.C. Vaissière, E. Starikov, P. Shiktorov, V. Gruzhinskis, B. Azaïs: Solid State Electron. Vol. 53 (2009), p.70.

DOI: 10.1016/j.sse.2008.10.003

Google Scholar