In Situ Simulation by RHEED and Photoemission of GaAs (001) β2(2x4) Reconstructed Surface

Article Preview

Abstract:

In situ monitoring of surface processes and understanding of growth processes are important in achieving precise control of crystal growth. Therefore, many surface monitoring techniques are used during crystal growth by molecular beam epitaxy (MBE). The most popular is reflection high-energy electron diffraction (RHEED) and photoemission current which provides information on the morphology during the growing surface. The photoemission oscillation technique has been successfully used in situ to monitor the growth of materials and to control the thickness as well as the roughness of the deposited layer. In this paper, we report results of atomic scale simulations used to study the dynamics of homoepitaxial growth of GaAs(001) β2(2x4) reconstructed surface and, in particular, the RHEED oscillations of the photoemission current.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

132-137

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Müller, J. J. Métois and P. Rudolph, in: Crystal Growth, Elsevier (2004).

Google Scholar

[2] K. Byrappa and T. Ohachi, in: Crystal Growth technology, Springer (2002).

Google Scholar

[3] H. Khachab, in: Modélisation de la croissance épitaxiale par jets moléculaires avec la méthode de Monte Carlo cinétique, Thesis, doctor of science, Tlemcen University, Algeria (2010).

Google Scholar

[4] H. Khachab, Y. Abdelkafi, A. Belghachi : Defect and Diff. Forum Vols. 297-301 (2010) p.308.

Google Scholar

[5] M. Itoh: Progress in Surface Science Vol. 66 (2001), p.53.

Google Scholar

[6] Y. Abdelkafi : Modélisation et simulation de l'épitaxie par jets moléculaires, Mémoire de magister, Université de Béchar, Algérie (2009).

Google Scholar

[7] B.A. Joyce, D.D. Vvedensky, G.R. Bell , J.G. Belk, M. Itoh and T.S. Jones: Mat. Sci. Eng. B Vol. 67 (1999), p.7.

Google Scholar

[8] D.D. Vvedensky, M. Itoh, G.R. Bell, T.S. Jones and B.A. Joyce: J. Crystal Growth Vols. 201/202 (1999), p.56.

Google Scholar

[9] B.A. Joyce, D.D. Vvedensky, A.R. Avery, J.G. Belk, H.T. Dobbs and T.S. Jones: Appl. Surf. Sci. Vol. 130 (1998), p.357.

Google Scholar

[10] H. Khachab, Y. Abdelkafi and A. Belghachi: In situ simulation by RHEED of GaAs (001) β2(2x4) reconstructed surface, International Conference on Information and Multimedia Technology (ICIMT 2009), p.517, IEEE conference (2010).

DOI: 10.1109/icimt.2009.61

Google Scholar

[11] T. Huhtamaki, M.O. Jahma and I.T. Koponen: Nuclear Instruments and Methods in Physics Research B Vol. 264 (2007), p.55.

Google Scholar

[12] N. Fazouan: Simulation de suivi in situ par photoémission de la dynamique de croissance épitaxiale de semiconducteurs III-V, thèse de doctorat d'état, Université Ibn Tofail, Maroc (2001).

Google Scholar

[13] M. Djafari Rouhan, N. Fazouan, A.M. Gue and D. Estève: Vacuum, Vol. 46 (1995), p.931.

Google Scholar

[14] M. Sahlaoui, N. Fazouan, M. Sajieddine, M. Djafari. Rouhani, A. Esteve: J. Condensed Matter, Vol. 6 ( 2005), p.89.

Google Scholar

[15] N. Fazouan, M. Djafari Rouhani, A.M. Gue and D. Esteve: Surf Sci Vols. 352-354 (1996), p.1022.

Google Scholar

[16] F. Maury, K. Bouabid , N. Fazouan , A.M. Gué and D. Estève: Appl Sur Sci Vol. 86 (1995), p.447.

Google Scholar