Heat Transfer in Nanocomposites with Monte-Carlo Simulations

Article Preview

Abstract:

Carbon nanotubes (CNTs) have been suggested to be reinforcement fillers in a variety of composite materials due to their exceptional electrical, thermal and mechanical properties. In terms of thermal properties, incorporating CNTs into a polymer matrix should increase the effective thermal conductivity of the resulting composite. However, the presence of resistance to the transfer of heat at the CNT-polymer interface, known as the Kapitza resistance, results in underperformance of CNT nanocomposites, in terms of thermal properties. In this work, we use Monte Carlo simulations to calculate the effective thermal conductivity of CNT nanocomposites taking into account the Kapitza resistance, as well as the effective thermal conductivity for different inclusion geometries (sphere, cylinder and parallelepiped). The effect of the dispersion pattern of the nano-inclusions is also investigated. Finally, comparing the calculated thermal conductivity from the simulations to experiments, the methodology can be used to calculate the Kapitza resistance of such systems.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

177-182

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Che, T. Cagin and A.W. Goddard III: Nanotechnology Vol. 11 (2000), p.65.

Google Scholar

[2] S. Berber, Y.K. Kwon and D. Tomanek: Phys. Rev. Lett. Vol. 84 (2000), p.4613.

Google Scholar

[3] A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao and C.N. Lau: Nano Lett. Vol. 7 (2008), p.902.

DOI: 10.1021/nl0731872

Google Scholar

[4] E.T. Swartz and R.O. Pohl: Rev. Mod. Phys. Vol. 61 (1989), p.605.

Google Scholar

[5] R.B. Bird, E.W. Stewart, and N.E. Lighfoot: Transport Phenomena 2nd Edition, John Wiley & Sons (2002).

Google Scholar

[6] J.E. Peters, D.V. Papavassiliou and B.P. Grady: Macromolecules Vol. 41 (2008), p.7274.

Google Scholar

[7] G.W. Nan, R. Birringer, D.R. Clarke and H. Gleiter: J. Appl. Phys. Vol. 81 (1997), p.669.

Google Scholar

[8] G.W. Nan, G. Liu, Y. Lin and M. Li: Appl. Phys. Lett. Vol. 85 (2004), p.3549.

Google Scholar

[9] H.M. Duong, D.V. Papavassiliou. L.L. Lee and K.J. Mullen: App. Phys. Lett. Vol. 87 (2005), p.013101.

Google Scholar

[10] H.M. Duong, D.V. Papavassiliou, K.J. Mullen and S. Maruyama: Nanotechnology Vol. 19 (2008), p.065702.

Google Scholar

[11] H.M. Duong, D.V. Papavassiliou, K.J. Mullen, B.L. Wardle and S. Maruyama: J. Phys. Chem. C Vol. 112 (2008), p.19860.

Google Scholar

[12] H.M. Duong, D.V. Papavassiliou, K.J. Mullen, B.L. Wardle and S. Maruyama: Int. J. of Heat Mass Transf. Vol. 52 (2009), p.5591.

Google Scholar

[13] M.B. Jakubinet, M.A. White, M. Mu and K. Winey: App. Phys. Lett. Vol. 96 (2010), p.083105.

Google Scholar

[14] Y. Takagi, T. Hosokawa, K. Hoshikawa, Kobayashi H. and Y. Hiki: J. Phys. Soc. Jpn. Vol. 76 (2007), p.024604.

Google Scholar

[15] H. Park, C.B. Park, C. Tzoganakis, K.H. Tan and P. Chen: Ind. Eng. Chem. Res. Vol. 47 (2008), p.4369.

Google Scholar

[16] N. Tsutsumi, S. Kizu, W. Sakai and T. Kiyotsukuri: J. Poly. Sci.: Part B: Polymer Physics Vol. 35 (1998), p.1869.

Google Scholar