Influence of Important Nanoemulsions pH on Performance of Nanostructures Catalysts for H2 Production in Syngas Reactions

Abstract:

Article Preview

The synthesis of nanostructures are very various, and the most of scientists always fabricate them by the coprecipitation method at pH = 10.5-11. If we prepare these nanocatalysts for partial oxidation of methane (POM), processes to transforme methane gas into hydrogen or synthesis gas (H2 + CO) for obtaining exact green fuel H2 gas at different pH, what will be occurring?, and what is the influence of pH on nanoemulsion, nanofluids, nanostructures, and finally the application in syngas process? In this study we prepared many different nanoparticles containing % x (w/w) Co, Ni, Ru and La oxides over the various supports e.g. Ce-ZrO2, MgO-CeO2, AlCeO2, SiO2, SiAl2O3, SiMgO, SiO2Al-MCM-41 nano mixed oxides sized (1-2 nm) at various pH (7, 8, 9, 11) by new coprecipitation and combine with nanofluids method using different direct agent surfactant, stabilizer, binder, alcohol solvent, dispersant and variable chemical pH controllers. The prepared nanostructures were characterized by common techniques such as SEM, TEM, XRD, Raman, FTIR, BET and TPR analysis at various pH. Also many marvellous and new mixture of nanotubes-nanoclay and nanotubes-nanocomposites with high % H2 selectivity and methane conversion were fabricated by CuOx and NiOx sputtering test followed coprecipitation method at pH 9, for POM reactions used in petrochemical industry for the first time.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Edited by:

Andreas Öchsner, Graeme E. Murch and João M.P.Q. Delgado

Pages:

20-26

DOI:

10.4028/www.scientific.net/DDF.312-315.20

Citation:

Z. Fakhroueian et al., "Influence of Important Nanoemulsions pH on Performance of Nanostructures Catalysts for H2 Production in Syngas Reactions", Defect and Diffusion Forum, Vols. 312-315, pp. 20-26, 2011

Online since:

April 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.