Production of Cu/SiC Nanocomposite Layers by Friction Stir Processing

Abstract:

Article Preview

Friction stir processing (FSP) was applied to modify the microstructure of pure copper and Cu/SiC nanocomposite layers. Optical and scanning electron microscopy (SEM) was employed to investigate the microstructure on the modified surface. Also, the wear resistance and friction coefficient behavior of specimens were investigated. FSP homogenizes and refines the copper structure and creates a microstructure with nano-sized SiC particles (30 nm) distributed in the pure copper matrix. Also, it is found that the traversal speed of tool significantly influence the microstructure of developed zone in pure copper. Generally, higher tool traverse speed leads to a more homogeneous microstructure and SiC particles dispersion. This means that higher traverse speeds result in agglomeration of SiC particles which reduces the microhardness values.

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Edited by:

Andreas Öchsner, Graeme E. Murch and João M.P.Q. Delgado

Pages:

319-324

DOI:

10.4028/www.scientific.net/DDF.312-315.319

Citation:

M. Barmouz et al., "Production of Cu/SiC Nanocomposite Layers by Friction Stir Processing", Defect and Diffusion Forum, Vols. 312-315, pp. 319-324, 2011

Online since:

April 2011

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.