Mathematical Modeling of Heat Transfer in Laser Surface Hardening of AISI 1050 Steel

Article Preview

Abstract:

Laser surface hardening is a method used for surface modification without affecting the bulk properties of materials. Due to rapid cooling and little thermal penetration in the surface layer, a homogenous structure and little distortion are usually obtained. When a high power laser irradiates a material surface, a part of the laser energy is absorbed and conducted into the interior of the material. If the absorbed energy is high enough, the material surface will melt and even vaporizes. Consequently the temperature of the process is of promote importance to incorporate an appropriate structural layer. In this regard, a study has been carried out to implement a mathematical modeling method to control the temperature gradient, which affects on the depth of the hardened layer. The model is based on solving the heat transfer equation and such a condition by assuming that the thermo-physical properties of the material are independent of the temperature. To evaluate the application of the proposed model, laser surface hardening was carried out to AISI 1050 steel, using a 1 kW CO2 laser. It was shown that the experimental results obtained are in good agreement with the proposed model.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

381-386

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Sh. Razavi, M. Salehi, M. Monirvaghefi, R. Mozafarinia: ISIJ International Vol. 47 (2007), p.709.

Google Scholar

[2] R. Sh. Razavi, M. Salehi, M. Monirvaghefi, G.R. Gordani: Journal of Materials Processing Technology Vol. 203 (2008), p.315.

Google Scholar

[3] R. Sh. Razavi, M. Salehi, M. Monirvaghefi, G.R. Gordani: Journal of Materials Processing Technology Vol. 195 (2008), p.154.

Google Scholar

[4] G.R. Gordani, R. Sh. Razavi, S. H. Hashemi, A. R. Nasrisfahani: Optics and Lasers in Engineering Vol. 46 (2008), p.550.

Google Scholar

[5] R. Kaul, P. Ganesh, P. Tiwari, R.V. Nandedkar, A.K. Nath: Journal of Materials Processing Technology Vol. 167 (2005), p.167, p.83.

DOI: 10.1016/j.jmatprotec.2004.09.085

Google Scholar

[6] H. Pantsar, V. Kujanp: Surface and Coatings Technology Vol. 200 (2006), p.2627.

Google Scholar

[7] J. Rana, G.L. Goswami, S.K. Jha, P.K. Mishra, B.V.S.S.S. Prasad: Optics and Laser Technology Vol. 39 (2007), p.385.

Google Scholar

[8] A. Basu, J. Chakraborty, S.M. Shariff, G. Padmanabham, S.V. Joshi, G. Sundararajan, J. Dutta Majumdar, I. Manna: Scripta Materialia Vol. 56 (2007), p.887.

DOI: 10.1016/j.scriptamat.2007.01.029

Google Scholar

[9] K. Chiang, Y.C. Chen: Materials Letters Vol. 59 (2005), p. (1919).

Google Scholar

[10] H.J. Shin, Y.T. Yoo, D.G. Ahn, K. Im: Journal of Materials Processing Technology Vols. 187–188 (2007), p.467.

Google Scholar

[11] R.A. Ganeev: Journal of Materials Processing Technology Vol. 121 (2002), p.414.

Google Scholar

[12] T. Zhang, T. Xiao, B. Yang: International Journal of Advanced Manufacturing Technology Vol. 37 (2008), p.690.

Google Scholar

[13] F. Lusquinos, J.C. Conde, S. Bonss, A. Riveiro, F. Quintero, R. Comesana, J. Pou: Applied Surface Science Vol. 254 (2007), p.948.

DOI: 10.1016/j.apsusc.2007.07.200

Google Scholar

[14] B.Q. Yang, K. Zhang, G.N. Chen, G.X. Luo, J.H. Xiao: Surface and Coatings Technology Vol. 201 (2006), p.2208.

Google Scholar

[15] M.J. Tobar, C. Alvarez, J.M. Amado, A. Ramil, E. Saavedra, A. Yanez: Surface and Coatings Technology Vol. 200 (2006), p.6362.

Google Scholar

[16] G. Herziger, H. Weber, R. Poprawe: Laser Physics and Applications, 2007, Germany, Springer.

Google Scholar