The Influence of Rare Earth, Strontium and Calcium on the Thermal Diffusivity of Mg-Al Alloys

Article Preview

Abstract:

The microstructure and thermal diffusivity of as-cast AM60, AE63, AJ63 and AXJ620 alloys were investigated over the temperature range 20–300°C. The microstructure of as-cast AM60 magnesium alloy consists of dendrites of α-Mg solid solution and divorced eutectic containing “islands” of α-Mg and Mg17Al12 phase. In regions adjacent with divorced eutectic, the supersaturation aluminum solute in the α-Mg matrix is observed. The addition of rare earth, calcium and strontium caused the decrease of the volume fraction of Mg17Al12 compound and aluminum content in α-Mg solid solution. Moreover, the intermetallic compounds such as: Al11RE3, Al4Sr, Al3Mg13Sr, Al2Ca are observed in the interdendritic regions. The thermal diffusivity of AM60 magnesium alloy increases with increasing temperature up to 150°C, above this temperature the increase is less marked. The change in the slope of the temperature variation of the thermal diffusivity is caused by a precipitation of Mg17Al12 phase in the supersaturation of α-Mg areas neighboring the divorced eutectic α-Mg+Mg17Al12. The addition of rare earth, calcium and strontium caused the increase of the thermal diffusivity and thermal conductivity due to the decreasing of aluminum content in α-Mg matrix.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

824-829

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Aljarrah, M. Medraj, J. Li, E. Essadiqi: Journals of Metals May (2009), p.68.

Google Scholar

[2] A.A. Luo: International Materials Reviews Vol. 49 (2004), p.13.

Google Scholar

[3] E. Aghion, B. Bronfin, F. von Buch, S. Schumann, H. Friedrich: Journals of Metals November (2003), p.30.

Google Scholar

[4] B. Jing, S. Yangshan, X. Shan, X. Feng, Z. Tianbai: Mat. Sci. Eng. A Vol. 419 (2006), p.181.

Google Scholar

[5] K. Wei, L.Y. Wei, R. Warren: Mat. Sci. Forum Vols. 546-549 (2007), p.73.

Google Scholar

[6] J. Zhang, P. Yu, K. Liu, D. Fang, D. Tang, J. Meng: Mat. And Design Vol. 30 (2009), p.2372.

Google Scholar

[7] J. S.W. Xu, N. Matsumoto, K. Yamamoto, S. Kamado, T. Honma, Y. Kojima: Mat. Sci. Eng. A Vol. 509 (2009), p.105.

Google Scholar

[8] Z. Jie-min, Y. Ying, M. Lamvik, W. Gang: J. Cent. South Univ. Technol. Vol. 8 (2001), p.60.

Google Scholar

[9] A. Kiełbus, R. Cibis: Archives of Foundry Engineering Vol. 6 (2006), p.197.

Google Scholar

[10] T. Rzychoń, A. Kiełbus: Archives of Foundry Engineering Vol. 6 (2006), p.167.

Google Scholar

[11] T. Rzychoń, A Kiełbus, G. Dercz: Solid State Phenomena Vol. 163 (2010), p.169.

DOI: 10.4028/www.scientific.net/ssp.163.169

Google Scholar

[12] A. Rudajevova, P. Lukac: Mater. Sci. Eng. A Vol. 397 (2005), p.16.

Google Scholar

[13] M. Yamasaki, Y. Kawamura: Scripta Materialia Vol. 60 (2009), p.264.

Google Scholar