Polymorphic and Morphological Transformation during the Transition from a Propagating Band to Static Bands in the Nickel Hydroxide/Ammonia Liesegang System

Article Preview

Abstract:

We present an experimental study of the Ni+2/Ni(OH)2/NH3 reaction-diffusion system in a gel (agar). The system, which consists of a gel containing an inner electrolyte Ni+2 and a diffusing outer electrolyte (NH3/OH-), exhibits pulse propagation due to the concomitant precipitation reaction between Ni+2 and hydroxide ions and re-dissolution due to ammonia. During the propagation of the pulse, a transition to Liesegang banding is shown to take place. The bands are characterized by IR and XRD and are shown to consist of the polymorph -Ni(OH)2 whereas the pulse contains the other polymorph -Ni(OH)2. SEM measurements also reveal a morphological change accompanying the polymorphic transition between the pulse and the bands and uncovering an Ostwald ripening mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 312-315)

Pages:

800-805

Citation:

Online since:

April 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Liesegang phenomenon: http: /www. insilico. hu/liesegang/index. html.

Google Scholar

[2] R.E. Liesegang: Lieseg. Photograph. Arch. Vol. 37 (1896), p.37.

Google Scholar

[3] H. Henisch: Crystals in Gels and Liesegang Rings (Cambridge University Press: Cambridge, 1988).

Google Scholar

[4] M. Al-Ghoul and R. Sultan: J. Phys. Chem. A Vol. 105 (2001), p.8053.

Google Scholar

[5] M. Al-Ghoul and R. Sultan: J. Phys. Chem. A Vol. 107 (2003), p.8053 and p.1095.

Google Scholar

[6] Z. Shreif, L. Mandalian, A. Abi-Haydar and R. Sultan: Phys. Chem. Chem. Phys. Vol. 6 (2004), p.3461.

DOI: 10.1039/b404064c

Google Scholar

[7] H. Batlouni, H. El-Rassy and M. Al-Ghoul: J. Phys. Chem. A Letter Vol. 112 (2008), p.7755.

Google Scholar

[8] V. Nasreddine and R. Sultan: J. Phys. Chem. A Vol. 103 (1999), p.2934.

Google Scholar

[9] F.E. Lloyd and V. Moravek: Plant Physiol. Vol. 3 (1928), p.101.

Google Scholar

[10] I. Das, A. Pushkarna and N.R. Argawal: J. Phys. Chem. Vol. 91 (1987), p.747.

Google Scholar

[11] I. Das, A. Pushkarna and N.R. Argawal: J. Phys. Chem. Vol. 93 (1989), p.7269.

Google Scholar

[12] I. Das, A. Pushkarna and A. Bhattacharjee: J. Phys. Chem. Vol. 94 (1990), p.8968.

Google Scholar

[13] I. Das, A. Pushkarna and A. Bhattacharjee: J. Phys. Chem. Vol. 95 (1991), p.3866.

Google Scholar

[14] M. Zrínyi, L. Gálfi, E. Smidróczki, Z. Rácz and F. Horkay: J. Phys. Chem. Vol. 95 (1991), p.1618.

Google Scholar

[15] R. Sultan and Sh. Panjarian: Physica D Vol. 157 (2001), p.241.

Google Scholar

[16] N. Hilal and R. Sultan: Chem. Phys. Lett. Vol. 373 (2003), p.183.

Google Scholar

[17] A. Volford, F. Izsák, M. Ripszám and I. Lagzi: J. Phys. Chem. B Vol. 110 (2006), p.4535.

Google Scholar

[18] I. Lagzi: J. Phys. Chem. B Vol. 17 (2003), p.13750.

Google Scholar

[19] F. Izsák and I. Lagzi: J. Phys. Chem. A Vol. 109 (2005), p.730.

Google Scholar