Studies of the EPR Parameters and Local Structure of Co2+ in ZnO

Article Preview

Abstract:

The EPR parameters and the local structure for Co2+ in ZnO are deduced from the perturbation formulas of these parameters for a 3d7 ion in a trigonally distorted tetrahedron. The ligand orbital and spin-orbit coupling contributions are taken into account uniformly from the cluster approach in view of the covalency of the system. The impurity V3+ is found not to locate exactly on the Zn2+ site but to experience a small displacement of 0.04 Ǻ away from the ligand triangle, along the C3 axis. The theoretical EPR parameters based upon the above impurity displacement are in good agreement with the observed values.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 316-317)

Pages:

1-6

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.B. Fitzgerald, M. Venkatesan, J.G. Lunney, L.S. Dorneles, J.M.D. Coey: Applied Surface Science, 247 (2005) 493.

DOI: 10.1016/j.apsusc.2005.01.043

Google Scholar

[2] T.P.J. Han, M. Villegas, M. Peiteado, A.C. Caballero, F. Rodríguez, F. Jaque: Chemical Physics Letters, 488 (2010) 173.

DOI: 10.1016/j.cplett.2010.02.028

Google Scholar

[3] Z.L. Lu, X.F. Bian, W.Q. Zou, M.X. Xu, F.M. Zhang: Journal of Alloys and Compounds, 492 (2010) 31.

Google Scholar

[4] S. Ghoshal, P.S.A. Kumar: Journal of Magnetism and Magnetic Materials, 320 (2008) L93.

Google Scholar

[5] X.Y. Zhou, S.H. Ge, D.S. Yao, Y.L. Zuo, Y.H. Xiao: Physica B, 403 (2008) 3336.

Google Scholar

[6] J.H. Yang, Y. Cheng, Y. Liu, X. Ding, Y.X. Wang, Y.J. Zhang, H.L. Liu: Solid State Communications, 149 (2009) 1164.

Google Scholar

[7] A.S. Chakravarty: Introduction to the Magnetic Properties of Solids (Wiley Interscience Publications, New York, 1980).

Google Scholar

[8] A. Abragam, B. Bleaney: Electron Paramagnetic Resonance of Transition Ions (Oxford University Press, London, 1970).

Google Scholar

[9] R.M. Macfarlane: Physical Review B, 1 (1970) 989.

Google Scholar

[10] Y.Q. Jiang, N.C. Giles, L.E. Halliburton: Journal of Applied Physics, 101 (2007) 093706.

Google Scholar

[11] A. Hausmann: Physica Status Solidi, 31 (1969) K131.

Google Scholar

[12] E.H. Kisi, M.M. Elcombe: Acta Crystallographica. C, 45 (1989) 1867.

Google Scholar

[13] L.H. Wei, S.Y. Wu, Z.H. Zhang, H. Wang, X.F. Wang: Modern Physics Letters B, 22 (2008) 173.

Google Scholar

[14] M.L. Du, C. Rudowicz: Physical Review B, 46 (1992) 8974.

Google Scholar

[15] D.J. Newman, B. Ng: Reports on Progress in Physics, 52 (1989) 699.

Google Scholar

[16] W.L. Yu, X.M. Zhang, L.X. Yang, B.Q. Zen: Physical Review B, 50 (1994) 6756.

Google Scholar

[17] D.J. Newman, D.C. Pryce, W.A. Runciman: American Mineralogist, 63 (1978) 1278.

Google Scholar

[18] Z.Y. Yang: Journal of Physics - Condensed Matter, 12 (2000) 4091.

Google Scholar

[19] P. Koidl: Physical Review B, 15 (1977) 2493.

Google Scholar

[20] E. Clementi, D.L. Raimondi: Journal of Chemical Physics, 38 (1963) 2686.

Google Scholar

[21] E. Clementi, D.L. Raimondi, W.P. Reinhardt: Journal of Chemical Physics, 47 (1967) 1300.

Google Scholar

[22] J.S. Griffith: The Theory of Transition-Metal Ions (Cambriddge University Press, London, 1964).

Google Scholar

[23] B.R. McGarvey: Journal of Chemical Physics, 71 (1967) 51.

Google Scholar

[24] E.K. Hodgson, I. Fridovich: Biochemical and Biophysical Research Communications, 54 (1973) 270.

Google Scholar

[25] A.B.P. Lever: Inorganic Electronic Spectroscopy (Elsevier Science Publishers, Amsterdam, 1984).

Google Scholar

[26] H.N. Dong, X.X. Wu, S.Y. Wu, W.C. Zheng: Acta Physica Sinica, 51 (2002) 616.

Google Scholar

[27] A. Fazzio, M.J. Caldas, A. Zunger: Physical Review B, 30 (1984) 3430; 29 (1984) 5999.

Google Scholar

[28] N. Gemma: Journal of Physics C, 17 (1984) 2333.

Google Scholar