Structural and Electrical Changes in BIMNVOX Oxide-Ion Conductor

Article Preview

Abstract:

Ceramic solid solutions Bi4MnxV2–xO11–(x/2)–δ in the composition range 0.07 ≤ x ≤ 0.30 were obtained by solid state synthesis. Structural investigations were carried out by using a combination of FT-IR and powder X-ray diffraction technique. Polymorphic transitions (β↔γ and γ′↔γ) were detected by DTA and variation in the Arrhenius plots of conductivity. The solid solutions with composition 0.07 ≤ x ≤ 0.17 are isostructural with the orthorhombic β-phase, and those with x ≤ 0.30 represent tetragonal γ-phase. With increasing Mn concentration, the conductivity of solid solutions increases from 3.684×10-6 (x = 0.07) to 2.467×10-5 (x = 0.17). AC impedance plots show that the conductivity is mainly due to the grain contribution which is evident in the enhanced short range diffusion of oxide ion vacancy in the grains with increasing temperature.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 316-317)

Pages:

7-22

Citation:

Online since:

May 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Kudo, K. Fueki, Solid State Ionics, VCH Publishers: New York, (1990).

Google Scholar

[2] B.C.H. Steele, Materials Science and Engineering B, 13 (1992) 79.

Google Scholar

[3] N.Q. Minh, Journal of the American Ceramic Society, 76 (1993) 563.

Google Scholar

[4] R.D. Cosimo, J.D. Burrington, R.K. Grasseli, Journal of Catalysis, 102 (1986) 234.

Google Scholar

[5] A. Cherrak, R. Hubaut, Y. Barbaur, G. Mairesse, Catalysis Letters, 15 (1992) 377.

Google Scholar

[6] J. Barrault, C. Grosset, M. Dion, M. Ganne, M. Tournoux, Catalysis Letters, 16 (1992) 203.

DOI: 10.1007/bf00764372

Google Scholar

[7] M.P. Harold, C. Lee, A.J. Burggraaf, K. Keizer, V.T. Zaspalis, R.S.A. de Lange, MRS Bulletin, April (1994) 39.

DOI: 10.1557/s088376940003949x

Google Scholar

[8] T. Tsai, E. Perry, S. Barnet, Journal of the Electrochemical Society, 144 (1997) L132.

Google Scholar

[9] J.C. Boivin, G. Mairesse, Chem. Mater., 10 (1998) 2888.

Google Scholar

[10] J.B. Goodenough, Nature, 404 (2000) 821.

Google Scholar

[11] A.F. Sammells, R.L. Cook, J.H. White, J.J. Osborne, R.C. Mac Duff, Solid State Ionics, 53 (1992) 111.

Google Scholar

[12] I. Abrahams, F. Krok, J.A.G. Nelstrop, Solid State Ionics, 90 (1996) 65.

Google Scholar

[13] A.V. Chadwick, C. Colli, C. Maltese, G. Morrisson, I. Abrahams, A. Bush, Solid State Ionics, 119 (1999) 84.

DOI: 10.1016/s0167-2738(98)00486-x

Google Scholar

[14] C. Pirovano, R.N. Vannier, G. Nowogrocki, J.C. Boivin, G. Mairesse, Solid State Ionics, 159 (2003) 191.

Google Scholar

[15] T.H. Etsell, S.N. Flengas, Chemical Reviews, 70 (1970) 339.

Google Scholar

[16] B. Aurivillius, Ark. Kemi. 1 (1949) 463.

Google Scholar

[17] B. Aurivillius, Ark. Kemi. 1 (1949) 499.

Google Scholar

[18] B. Aurivillius, Ark. Kemi. 2 (1950) 519.

Google Scholar

[19] A.D. Rae, J.G. Thomson, R.L. Withers, Acta Crystallographica B, 48 (1992) 418.

Google Scholar

[20] E.C. Subbaro, Journal of the American Ceramic Society, 45 (1962) 166.

Google Scholar

[21] B. Frit, J.P. Mercurio, Journal of Alloys and Compounds, 188 (1992) 27.

Google Scholar

[22] A. A. Bush, Y.U.N. Venevtsev, Russian Journal of Inorganic Chemistry, 31 (1986) 771.

Google Scholar

[23] J.L. Hutchison, J.S. Anderson , C.N.R. Rao, Proceedings of the Royal Society of London A, 355 (1977) 301.

Google Scholar

[24] F. Abraham, M.F. Debruille-Gresse, G. Mairesse, G. Nowogrocki, Solid State Ionics, 28-30 (1988) 529.

DOI: 10.1016/s0167-2738(88)80096-1

Google Scholar

[25] A.M. Kusainova, S. Yu. Stefanovich, V.A. Dolgikh, A.V. Mosunov, C.H. Hervoches, P. Lightfool, J. Mater. Chem. 11 (2001) 1145.

DOI: 10.1039/b008492l

Google Scholar

[26] I. Abrahams, J. C. Boivin, G. Mairesse, and G. Nowogrocki, Solid State Ionics, 40–41 (1990) 934.

DOI: 10.1016/0167-2738(90)90157-m

Google Scholar

[27] R. N. Vannier, G. Mairesse, F. Abraham, and G. Nowogrocki, Solid State Ionics, 70–71 (1994) 248.

DOI: 10.1016/0167-2738(94)90318-2

Google Scholar

[28] F. Krok, W. Bogusz, W. Jakubowski, et al., Solid State Ionics, 70–71 (1994) 248.

Google Scholar

[29] G. Mairesse, P. Roussel, R. N. Vannier, M. Anne, C. Pirano, and G. l. Nowogrocki, Solid State Science, 5 (2003) 859.

Google Scholar

[30] G. Mairesse, P. Roussel, R. N. Vannier, M. Anne, G. Nowogrocki, Solid State Science, 5 (2003) 869.

Google Scholar

[31] R. N. Vannier, E. Pernot, M. Anne, O. Isnard, G. Nowogrocki, G. Mairesse, Solid State Ionics, 157 (2003) 153.

Google Scholar

[32] S. P. Simner, D. Suarez-Sandoral, J. D. Mackenzie, B. Dunn. Journal of the American Ceramic Society, 80 (1997) 2568.

Google Scholar

[33] F. Krok, I. Abrahams, D.G. Bangobango, W. Bogusz, J.A.G. Nelstrop, Solid State Ionics, 86-88 (1996) 266.

DOI: 10.1016/0167-2738(96)00102-6

Google Scholar

[34] R.N. Vannier, G. Mairesse, G. Nowogrocki, F. Abraham, J.C. Boivin, Solid State Ionics, 53-56 (1992) 713.

DOI: 10.1016/0167-2738(92)90245-k

Google Scholar

[35] G. Mairesse, in: Fast Ion Transport in Solids, eds. B. Scrosatiet, Kluwer Academic Publishing (1993) p.271.

Google Scholar

[36] J.B. Goodenough, A. Manthiram, M. Paranthaman and Y.S. Zhen, in: Fast Ion Transport in Solids, eds. B. Scrosati et al. Kluwer Academic Publ., (1993) p.357.

Google Scholar

[37] O. Joubert, A. Jouanneaux, M. Ganne, R.N. Vannier, G. Mairesse, Solid State Ionics, 73 (1994) 309.

DOI: 10.1016/0167-2738(94)90049-3

Google Scholar

[38] I. Abrahams, F. Krok, J. Mater. Chem. 12 (2002) p-3162.

Google Scholar

[39] S. Lazure, R.N. Vannier, G. Nowogrocki, G. Mairesse, C. Muller, M. Anne, P. Strobel, J. Mater. Chem., 519 (1995) 1395.

DOI: 10.1039/jm9950501395

Google Scholar

[40] J.B. Goodenough, A. Manthiram, P. Paranthaman, Y.S. Zhen, Solid State Ionics, 52 (1992) 105.

DOI: 10.1016/0167-2738(92)90096-8

Google Scholar

[41] O. Joubert, A. Jouanneaux, M. Ganne, Materials Research Bulletin, 29 (1994) 406.

Google Scholar

[42] V.P. Tolstoy and E.V. Tolstobrov, Solid State Ionics, 151 (2002) 169.

Google Scholar

[43] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, Wiley, New York, (1997).

Google Scholar

[44] S. Beg, N.A.S. Al-Areqi, A. Al-Alas, S. Hafeez, Physica B, 404 (2009) (2079).

DOI: 10.1016/j.physb.2009.03.044

Google Scholar

[45] S. Beg, S. Hafeez, N. Al-Areqi, Phase Trans. 83 (2010) 169.

Google Scholar

[46] B. Vaidhyanathan, K. Balaji and K.J. Rao, Chem. Mater., 10 (1998) 404.

Google Scholar

[47] M. Alga, A. Ammar, R. Essalim, B. Tanouti, F. Mauvy and R. Decourt, Solid State Science, 7 (2005) 1179.

DOI: 10.1016/j.solidstatesciences.2005.06.011

Google Scholar

[48] S. Beg and N.A.S. Al-Areqi, Journal of the Physics and Chemistry of Solids, 70 (2009) 1007.

Google Scholar

[49] M. Huve, R.N. Vannier, G. Nowogrocki, G. Mairesse, G.V. Tendeloo, J. Mater. Chem., 6 (1996) 1339.

Google Scholar

[50] C.J. Watson, A. Coats, D.C. Sinclair, J. Mater. Chem., 7 (1997) (2091).

Google Scholar

[51] F. Krok, I. Abrahams, M. Malys, W. Bogusz, J.R. Dygas, J.A.G. Nelstrop, A.J. Bush, Solid State Ionics, 136–137 (2000) 119.

DOI: 10.1016/s0167-2738(98)00495-0

Google Scholar

[52] R.D. Shannon Acta Crystallographica A, 32 (1976) 751.

Google Scholar

[53] F. Krok, I. Abrahams, W. Wrobel, S.C.M. Chan, M. Malys, W. Bogusz, J.R. Dygas, Solid State Ionics, 154–155 (2002) 511.

DOI: 10.1016/j.ssi.2005.04.024

Google Scholar

[54] F. Krok, I. Abrahams, D. Bangobango, W. Bogusz, J.A.G. Nelstrop, Solid State Ionics, 111 (1998) 37.

DOI: 10.1016/s0167-2738(98)00188-x

Google Scholar

[55] O. Thery, R.N. Vanniers, C. Dion, F. Abraham, Solid State Ionics, 90 (1996) 105.

Google Scholar

[56] O. Joubert, M. Ganne, R.N. Vannier, G. Mairesse, Solid State Ionics, 83 (1996) 199.

Google Scholar

[57] R.N. Vannier, G. Mairesse, F. Abraham, G. Nowogrocki, Solid State Ionics, 80 (1995) 11.

Google Scholar

[58] C.K. Lee, A.R. West, Solid State Ionics, 86–88 (1996) 235.

Google Scholar

[59] M. Guillodo, J. Fouletier, L. Dessemond, P.D. Gallo, Journal of the European Ceramic Society, 21 (2001) 2331.

Google Scholar

[60] M.J. Godinoh, P.R. Bueno, M.O. Orlandi, E.R. Leite, E. Longo, Mater. Lett., 57 (2003) 2540.

Google Scholar

[61] C.K. Lee, D.C. Sinclair, A.R. West, Solid State Ionic, 62 (1993) 193.

Google Scholar

[62] J.R. Dygas, M. Malys, F. Krok, W. Wrobel, A. Kozanecka, I. Abrahams, Solid State Ionics, 176 (2005) (2085).

DOI: 10.1016/j.ssi.2004.12.017

Google Scholar

[63] J. Yan, M. Greenblatt, Solid State Ionics, 81 (1995) 225.

Google Scholar

[64] I. Abrahams, F. Krok, M. Malys, A. J Bush, Journal of Materials Science, 36 (2001) 1099.

Google Scholar

[65] R. Kant, K. Singh, O.P. Pandey, International Journal of Hydrogen Energy, 33 (2008) 455.

Google Scholar