The Effect of a Light Impurity on the Electronic Structure of Dislocations in NiAl

Article Preview

Abstract:

The effect of light impurities (C, N) upon the electronic structure of the [100](010) edge dislocation core in NiAl single crystals is investigated by using the Dmol and the discrete variational method within the framework of density functional theory. The impurity segregation energy, interatomic energy and charge distribution are calculated, and the effects of impurity atoms upon the dislocation motion are discussed. The energy analysis shows that both C and N atoms can stabilize the [100](010) edge dislocation core, and prefer to occupy the interstitial site in the Center-Ni dislocation core. Meanwhile, the impurity atoms can form strong bonding states with their neighboring host atoms via hybridization between the 2p orbitals of the impurity atom and the 3d4s4p orbitals of the host Ni atoms; as well as between the 2p orbitals of the impurity atom and the 3s3p orbitals of the host Al atoms. The strong interaction between impurity atom and host atoms in the dislocation core may improve the strength of NiAl single crystals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-32

Citation:

Online since:

July 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Y. Zhang, H. Zhang, H. A. Zhanag, and J. T. Guo: Journal of the Iron and Steel Research Institute, 13 (2006) 44.

Google Scholar

[2] P. Zwigl and D. C. Dunand: Materials Science and Engineering A, 335 (2002) 128.

Google Scholar

[3] X. H. Du, J. T. Guo and B. D. Zhou: Materials Letters, 52 (2002) 442.

Google Scholar

[4] J. T. Guo, R. S. Chen and G. S. Li: J. Mater. Process. Technol., 139 (2003) 337.

Google Scholar

[5] W. L. Zhou, J. T. Guo, R. S. Chen, G. S. Li, J and Y. Zhou: Materials Letters, 47 (2001) 30.

Google Scholar

[6] A. Ball and R. E. Smallman: Acta Metallurgica, 14 (1966) 1349.

Google Scholar

[7] T. Takasugi, J. Kishino and S. Hanada: Acta Metallurgica et Materialia, 41 (1993) 1009.

DOI: 10.1016/0956-7151(93)90150-q

Google Scholar

[8] J. Hu and D. L. Liu: Materials Science and Engineering A, 490 (2008) 157.

Google Scholar

[9] C. Yang: International Journal of Mechanical Sciences, 48 (2006) 950.

Google Scholar

[10] B. Ghosh and M. A. Crimp: Materials Science and Engineering A, 239-240 (1997) 142.

Google Scholar

[11] F. Ebrahimi and S. Shrivastava: Acta Materialia, 46 (1998) 1493.

Google Scholar

[12] T. M. Pollock, D. C. Lu, X. Shi and K. Eow: Materials Science and Engineering A, 317 (2001) 241.

Google Scholar

[13] O. Yu Kontsevoi, Yu N. Gornostyrev, O. N. Mryasov and A. J. Freeman: Physical Review B, 64 (2001) 134103.

Google Scholar

[14] C. L. Fu and J. Zou: Acta Materialia, 44 (1996) 1471.

Google Scholar

[15] C. T. Liu and J. A. Horton: Materials Science and Engineering A, 192-193 (1995) 170.

Google Scholar

[16] C. H. Kong and P. R. Munroe: Scripta Metallurgica et Materialia, 32 (1995) 469.

Google Scholar

[17] R. Darolia, D. F. Lahrman and R. D. Field: Scripta Metallurgica, 26 (1992) 1007.

Google Scholar

[18] P. J. Zhou, J. J. Yua, X. F. Sun, H. R. Guan and Z. Q. Hu: Materials Science and Engineering A, 491 (2008) 159.

Google Scholar

[19] N. I. Medvedeva, Yu N. Gornostyrev, D. L. Novikov, O. N. Mryasov and A. J. Freeman: Acta Materialia, 46 (1998) 3433.

DOI: 10.1016/s1359-6454(98)00042-1

Google Scholar

[20] Y. L. Wang and I. P. Jones: Intermetallics, 14 (2006) 800.

Google Scholar

[21] O. Yu Kontsevoi, Yu N. Gornostyrev, A. J. Freeman, M. I. Katsnelson and A. V. Trefilov: Philosophical Magazine Letters, 81 (2001) 455.

DOI: 10.1080/09500830110055373

Google Scholar

[22] D. B. Miracle: Acta Metallurgica et Materialia, 41 (1993) 649.

Google Scholar

[23] B. Delley: Journal of Chemical Physics, 94 (1991) 7245.

Google Scholar

[24] B. Delley: Journal of Chemical Physics, 92 (1990) 508.

Google Scholar

[25] D. E. Ellis and G. S. Painter: Physical Review B, 2 (1970) 2887.

Google Scholar

[26] D. Guenzburger and D. E. Ellis: Physical Review B, 46 (1992) 285.

Google Scholar

[27] H. L. Dang and C. Y. Wang: Computational Materials Science, 39 (2007) 557.

Google Scholar

[28] S. Y. Wang, C. Y. Wang, J. H. Sun, W. H. Duan and D. L. Zhao: Physical Review B, 63 (2001) 035101.

Google Scholar

[29] U. von Barth and L. Hedin: Journal of Physics C, 5 (1972) 1629.

Google Scholar

[30] S. H. Vosko, L. Wilk and M. Nusair: Canadian Journal of Physics, 58 (1980) 1200.

Google Scholar

[31] M. S. Duesbery: Dislocation in Solids (North-Holland: Amsterdam) 8 (1989) 76.

Google Scholar

[32] A. F. Voter and S. P. Chen: in High Temperature Ordered Intermetallic Alloys, edited by Siegel R W et al., MRS Symposia Proceeding No. 82 (Materials Research Society, Pittsburgh, 1987), p.175.

Google Scholar

[33] J. A. Yan, C. Y. Wang, W. H. Duan and S. Y. Wang: Physical Review B, 69 (2004) 214110.

Google Scholar

[34] C. Y. Wang and D. L. Zhao: Mater. Res. Soc. Symp. Proc., 318 (1994) 571.

Google Scholar

[35] C. Y. Wang: Defect and Diffusion Forum, 125-126 (1995) 79.

Google Scholar

[36] R. S. Mülliken: Journal of Chemical Physics, 23 (1955) 1833.

Google Scholar