Three-Dimensional Diffusion in Arbitrary Domain Using Generalized Coordinates for the Boundary Condition of the First Kind: Application in Drying

Article Preview

Abstract:

This work presents a three-dimensional numerical solution for the diffusion equation in transient state, in an arbitrary domain. For this end, the diffusion equation was discretized using the finite volume method with a fully implicit formulation and generalized coordinates, for the equilibrium boundary condition. For each time step, the system of equations obtained for a given structured mesh was solved by the Gauss-Seidel method. The computational code was developed in FORTRAN, using the CFV 6.6.0 Studio, in a Windows platform. The proposed solution was validated using analytical and numerical solutions of the diffusion equation for different geometries (orthogonal and non-orthogonal meshes). The analysis and comparison of the results showed that the proposed solution provides correct results for the cases investigated. The developed computational code was applied in the simulation of the drying of ceramic roof tiles for the following temperature: 55.6 °C. The analysis of the results makes it possible to affirm that the developed numerical solution satisfactorily describes the drying processes in this temperature.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

120-125

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.E. Baumer and V.C. Mariani: XXVIII Congresso Nacional de Matemática Aplicada e Computacional, São Paulo (2005).

Google Scholar

[2] M. Amendola and M.R. Queiroz. Revista Brasileira de Engenharia Agrícola e Ambiental Vol. 11, n. 6, (2007). p.623.

Google Scholar

[3] S. Chemkhi and F. Zagrouba. Desalination Vol. 185, Iss. 1-3, (2005). p.491.

Google Scholar

[4] V.S.O. Farias, C.M.D.S. & Silva, J.A.R. Souza, W.P. Silva and M.E.R.M.C. da Mata. XXXVIII Congresso Brasileiro de Engenharia Agrícola, CD ROM (2009).

Google Scholar

[5] I. Saykova, G. Cwicklinski and P. Castelle. J. Univ. Chem. Technol. Metallurgy Vol. 44, n. 1, (2009), p.44.

Google Scholar

[6] A.G.B. Lima, S.A. Nebra: Drying Technol. Vol. 18, n. 1-2 (2000). p.21.

Google Scholar

[7] J.E.F. Carmo, A.G.B. Lima. Braz. J. Chem. Eng. Vol. 25, n. 1, (2008). p.19.

Google Scholar

[8] B. Wu, W. Yang and C. Jia. Biosystems Eng. Vol. 87, n. 2, (2004). p.191.

Google Scholar

[9] J.J.S. Nascimento, A.G.B. Lima, B.J. Teruel and F.A. Belo: Información Tecnológica Vol. 17, n. 6, (2006). p.145.

Google Scholar

[10] C. Salinas, A. Ananias, M. Alvear. Maderas, Ciência e Tecnologia Vol. 6, n. 1, (2004). p.3.

Google Scholar

[11] W.P. Silva, J.W. Precker, D.D.P.S. e Silva, C.D.P. S e Silva and A.G.B. Lima: Int. J. Heat Mass Transf. Vol. 52, n. 21-22, (2009). p.49.

Google Scholar

[12] C.R. Maliska: Transferência de Calor e Mecânica dos Fluidos Computacional, LTC Editora S.A., Rio de Janeiro, (2004).

Google Scholar

[13] V.S.O. Farias. Doctoral Thesis. Process Engineering, Center of Science and Technology, Federal University of Campina Grande, Campina Grande-PB, Brazil (2011).

DOI: 10.21475/ajcs.2016.10.10.p7455

Google Scholar