Phase Transformation and Thermoelectric Properties of In0.25Co4-xNixSb12 Skutterudites

Article Preview

Abstract:

In0.25Co4-xNixSb12 skutterudites were synthesized by encapsulated induction melting and consolidated by hot pressing, and their thermoelectric properties were examined at temperatures from 323 to 823 K. A single δ-phase was obtained successfully by subsequent heat treatment at 823 K for 24 h. In0.25Co4-xNixSb12 was an n-type semiconductor at all temperatures examined, indicating that Ni atoms acted as electron donors by substituting for Co atoms. The thermal conductivity was reduced considerably by In filling and Ni doping due to an increase in phonon scattering and impurity scattering. The thermoelectric properties were improved due to the low thermal conductivity as a result of In filling and the optimum carrier concentration caused by Ni doping.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

147-152

Citation:

Online since:

April 2012

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak: Binary Alloy Phase Diagrams, 2nd ed., American Society for Metals (1990), p.1232.

Google Scholar

[2] P. Feschotte and D. Lorin: J. Less-Common Metals Vol. 155 (1989), p.255.

Google Scholar

[3] H. Takizawa, K. Mimura, M. Ito, T. Sizuki and T. Endo: J. Alloys Comp. Vol. 282 (1999), p.79.

Google Scholar

[4] G. S. Nolas, H. Takizawa, T. Endo, H. Sellinschegg and D. C. Johnson: Appl. Phys. Lett. Vol. 77 (2000), p.52.

Google Scholar

[5] D. Mandrus, A. Migliori, T. W. Darling, M. F. Hundley, E. J. Peterson and J. D. Thompson: Phys. Rev. B. Vol. 52 (1995), p.4926.

Google Scholar

[6] K. T. Wojciechowski: Mater. Res. Bull. Vol. 37 (2002), p. (2023).

Google Scholar

[7] K. -H. Park, H. -I. Jung, S. -C. Ur and I. -H. Kim: J. Kor. Inst. Met. & Mater. Vol. 45 (2007), p.61.

Google Scholar

[8] M. -J. Kim, S. -C. Ur and I. -H. Kim: J. Kor. Inst. Met. & Mater. Vol. 45 (2007), p.191.

Google Scholar

[9] X. Y. Li, L. D. Chen, J. F. Fan, W. B. Zhang, T. Kawahara and T. Hirai: J. Appl. Phys. Vol. 98 (2005), p.83702.

Google Scholar

[10] K. Akai, H. Kurisu, T. Shimura and M. Matsuura: Proc. 16th Intl. Conf. Thermoelectrics (Dresden, Germany, IEEE, Aug. 1997), p.334.

Google Scholar

[11] K. Akai, H. Kurisu, T. Moriyama, S. Tamamoto and M. Matsuura: Proc. 17th Intl. Conf. Thermoelectrics (Nagoya, Japan, IEEE, May, 1998), p.105.

Google Scholar

[12] T. He, J. Z. Chen, H. D. Rosenfeld and M. A. Subramanian: Chem. Mater. Vol. 18 (2006), p.759.

Google Scholar

[13] J. -Y. Jung, S. -C. Ur and I. -H. Kim: Mater. Chem. Phys. Vol. 108 (2008), p.431.

Google Scholar

[14] J. Y. Peng, P. N. Alboni, J. He, B. Zhang, Z. Su, T. Holgate, N. Gothard and T. M. Tritt: J. Appl. Phys. Vol. 104 (2008), p.053710.

DOI: 10.1063/1.2975184

Google Scholar

[15] W. Y. Zhao, C. L. Dong, P. Wei, W. Guan, L. S. Liu, P. C. Zhai, X. F. Tang and Q. J. Zhang: J. Appl. Phys. Vol. 102 (2007), p.113708.

Google Scholar

[16] J. Y. Peng, J. He, Z. Su, P. N. Alboni, S. Zhu and T. M. Tritt: J. Appl. Phys. Vol. 105 (2009), p.084907.

Google Scholar

[17] H. Li, X. Tang, Q. Zhang and C. Uher: Appl. Phys. Lett. Vol. 94 (2009), p.102114.

Google Scholar

[18] H. Anno, K. Matsubara, Y. Notohara, T. Sakakibara and H. Tashiro: J. Appl. Phys. Vol. 86 (1999), p.3780.

Google Scholar

[19] I. -H. Kim, J. -I. Lee, S. -C. Ur, K. -W. Jang, G. -S. Choi and J. -S. Kim: Sol. Sta. Phen. Vol. 118 (2006), p.565.

Google Scholar

[20] X. Shi, W. Zhang, L. D. Chen and J. Yang: J. Phys. Rev. Lett. Vol. 95 (2005), p.1855031.

Google Scholar

[21] R. C. Mallik, J. -Y. Jung, S. -C. Ur and I. -H. Kim: Met. Mater. Int. Vol. 14 (2008), p.223.

Google Scholar

[22] J. S. Dyck, W. Chen, C. Uher, L. Chen, X. Tang and T. Hirai: J. Appl. Phys. Vol. 91 (2002), p.3698.

Google Scholar

[23] M. Puyet, A. Dauscher, B. Lenoir, M. Dehmas, C. Stiewe, E. Müller and J. Hejtmanek: J. Appl. Phys. Vol. 97 (2005), p.83712.

DOI: 10.1063/1.1868083

Google Scholar

[24] D. T. Morelli, G. P. Meisner, B. Chen, S. Hu and C. Uher: Phys. Rev. B. Vol. 56 (1997), p.7376.

Google Scholar

[25] G. A. Lamberton, Jr., S. Bhattacharya, R. T. Littleton IV, M. A. Kaeser, R. H. Tedstrom, T. M. Tritt, J. Yang and G. S. Nolas: Appl. Phys. Lett. Vol. 80 (2002), p.598.

DOI: 10.1063/1.1433911

Google Scholar

[26] G. S. Nolas, J. L. Cohn and G. A. Slack: Phys. Rev. B. Vol. 58 (1998), p.164.

Google Scholar

[27] B. C. Sales, B. C. Chakoumakos and D. Mandrus: Phys. Rev. B. Vol. 61 (2000), p.2475.

Google Scholar

[28] R. C. Mallik, J. -Y. Jung, S. -C. Ur and I. -H. Kim: Met. Mater. Int. Vol. 14 (2008), p.615.

Google Scholar

[29] R. C. Mallik, J. -Y. Jung, V. D. Das, S. -C. Ur and I. -H. Kim: Solid Stat. Comm. Vol. 141 (2007), p.233.

Google Scholar