Synthesis and Characterization of the Gold-SiO2 Core-Shell Nanoparticle on the X-Nanozeoliate Used for Immobilization of the Alkaline Protease Enzyme

Article Preview

Abstract:

Immobilized enzymes enhance process robustness, allow longer duration of activity of enzymes, and re-use of the same enzymes in multiple cycles. Enzymes can be operated in the liquid form or immobilized on various supports. In this work, we prepared gold nanoparticle core-shell structure by assembling of the gold nanoparticles on the surface of amine-functionalized x-type zeolite and then used them for immobilization of the alkaline protease. Characterization of these assembled systems were carried out by UVvisible, transmission electron microscopy (TEM), scanning electron microscopy (SEM) and energy dispersive analysis of X-ray (EDAX). Biocatalytic activity of the alkaline protease in this bioconjugate system was examined and showed an increase in comparing with the free enzyme in solution.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

93-98

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Lum, P. Metcalf, S.C. Harrison, D.C. Wiley: J. Appl. Crystallogr. Vol. 20 (1987), p.235.

Google Scholar

[2] W. Bode, F.X. Gomis-Ruth, R. Huber, R. Zwilling, W. Stocker: Nature Vol. 358 (1992), p.164.

Google Scholar

[3] G. Chumanov, K. Sokolov, T.M. Cotton: J. Phys. Chem. Vol. 100 (1996), p.5166.

Google Scholar

[4] D.G. Georganopoulou, D.E. Williams, C.M. Pereira, F. Silva, T.J. Su, J.R. Lu: Langmuir Vol. 19 (2003), p.4977.

Google Scholar

[5] E.M. Oliveira, S. Beyer, J. Heinze: Bioelechem. Vol. 71 (2007), p.186.

Google Scholar

[6] D. Brambley, B. Martin, P.D. Prewett: Adv. Mater. Opt. Electron. Vol. 4 (1994), p.55.

Google Scholar

[7] R. Jin, Y. Cao, C.A. Mirkin, K.L. Kelly, G.C. Schatz, J.G. Zheng: Science Vol. 294 (2001), p. (1901).

Google Scholar

[8] T. Huang, R.W. Murray: J. Phys. Chem. B Vol. 105 (2001), p.12498.

Google Scholar

[11] M.S. Sadjadi, N. Farhadyar, K. Zare: J. Nanosci. Nanotechnol. Vol. 9 (2009), p.1365.

Google Scholar

[12] L. Zeng, K.K. Luo, Y.F. Gong: J. Mol. Catal. B: Enzym. Vol. 38 (2006), p.24.

Google Scholar

[13] R.A. Sheldon: Adv. Synth. Catal. Vol. 349 (2007), p.1289.

Google Scholar

[14] M. Sastry: Trends Biotechnol. Vol. 20 (2002), p.185.

Google Scholar

[15] M. Sastry, A. Kumar, P. Mukherjee: Coll. Surf. A. Vol. 181 (2001), p.255.

Google Scholar

[16] M. Sastry, M. Rao, K.N. Ganesh: Acc. Chem. Res. Vol. 35 (2002), p.847.

Google Scholar

[17] C.M. Stoscheck: Meth. Enzymol. Vol. 182 (1990), p.50.

Google Scholar

[18] R. Amadelli, A. Molinari, I. Vitali, L. Samiolo, G. Maria Mura, A. Maldotti: Catal. Today Vol. 101 (2005), p.397.

DOI: 10.1016/j.cattod.2005.03.035

Google Scholar

[19] M.S. Sadjadi, N. Farhadyar, K. Zare: Superlattices and Microstructures Vol. 46 (2009), p.563.

Google Scholar