Estimation of Li-Ion Diffusion Coefficients in C60 Coated Si Thin Film Anodes Using Electrochemical Techniques

Article Preview

Abstract:

C60 coated Si thin films were prepared sequentially by a plasma enhanced chemical vapor deposition and a plasma assisted thermal evaporation technique. The films were then utilized as anode materials for lithium ion batteries. The diffusion coefficients of Li-ions in the film electrodes were then estimated by typical electrochemical techniques such as cyclic voltammetry and electrochemical impedance spectroscopy. The diffusion coefficients determined by both methods were found to be consistent each other. The diffusion coefficient of coated samples was obviously higher than that of bare silicon thin films, indicated that the kinetic properties of lithium ion transport in silicon film electrodes were enhanced by the C60 film coating on its surface.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

87-92

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. R. Palacin: Chem. Soc. Rev. Vol. 38 (2009), p.2565.

Google Scholar

[2] A. Patil, V. Patil, D. W. Shin, J.W. Choi, D.S. Paik and S.J. Yoon: Mattr. Res. Bull. Vol. 43 (2008), p. (1913).

Google Scholar

[3] U. Kasavajjula, C. S. Wang and A.J. Appleby: J. Power Sources Vol. 163 (2007), p.1003.

Google Scholar

[4] R.A. Huggins: Solid State Ionics Vol. 113-115 (1998), p.57.

Google Scholar

[5] H. Xia, L. Lu and G. Ceder : J. Power Sources Vol. 159 (2006), p.1422.

Google Scholar

[6] A.A. Arie, W. Chang and J.K. Lee: J. Solid State Electrochem. Vol. 14 (2010), p.51.

Google Scholar

[7] A.A. Arie, J.O. Song, B.W. Cho and J.K. Lee: Mat. Chem. Phys. Vol. 113 (2009), p.249.

Google Scholar

[8] A.A. Arie, O.M. Vovk. B.W. Cho and J.K. Lee: J. Electroceram. Vol. 23 (2009), p.248.

Google Scholar

[9] J.Y. Luo and Y.Y. Xia: Adv. Func. Mater. Vol. 17 (2007), p.3877.

Google Scholar

[10] L.B. Chen, J.Y. Xie, H.C. Yu and T.H. Wang: J. Appl. Electrochem. Vol. 39 (2009), p.1157.

Google Scholar

[11] L.B. Chen, J.Y. Xie, H.C. Yu and T.H. Wang: Electrochim. Acta Vol. 53 (2008), p.8149.

Google Scholar

[12] A.J. Bard and L.R. Faulkner : Electrochemical Methods: Fundamentals and Applications. (John Wiley & Sons, NY, 2001).

Google Scholar

[13] M.D. Levi and D. Aurbach: J. Elecroanal. Chem. Vol. 421 (1997), p.79.

Google Scholar

[14] K. Yoshimura, J. Suzuki and K. Sekine: J. Power Sources Vol. 14 (2005), p.445.

Google Scholar

[15] T.L. Kulova, A.M. Skundin, Y.V. Pleskov, E.I. Terukov and O.I. Konkov: J. Elecroanal. Chem. Vol. 600 (2007), p.217.

Google Scholar

[16] T.L. Kulova, A.M. Skundin, Y.V. Pleskov, E.I. Terukov and O.I. Konkov: Russ. J. Electrochem. Vol. 42 (2006), p.363.

Google Scholar

[17] T.L. Kulova, A.M. Skundin, Y.V. Pleskov, E.I. Terukov and O.I. Konkov: Russ. J. Electrochem. Vol. 42 (2006), p.708.

Google Scholar

[18] Y.H. Rho, K. Dokko and K. Kanamura: J. Power Sources Vol. 157 (2006), p.471.

Google Scholar

[19] C. Ho, I.D. Raistrick and R.A. Huggins: J. Electrochem. Soc. Vol. 127 (1980), p.345.

Google Scholar

[20] A. Funabiki, M. Inaba, Z. Ogumi, S. Yuasa, J. Otsuji and A. Tasaka: J. Electrochem. Soc. Vol. 145 p.172 – 178.

DOI: 10.1149/1.1838231

Google Scholar

[21] J. Xie, K. Kohno, T. Matsumura, N. Imanishi, A. Hirano, Y. Takeda and O. Yamamoto Electrochim. Acta. Vol. 54 (2008), p.376.

Google Scholar