[1]
White Paper on Quartz, Silica Sand, Granite, Marble, Rocks and Minerals, Zodiaq Quarts Surfaces, ZQ-2002-23, January (2002).
Google Scholar
[2]
R.H. Iler, The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry, NY, Wiley-Blackwell, (1979).
Google Scholar
[3]
D. William Callister, Jr., Materials Science and Engineering: an Introduction, 7th Edition, John Wiley & Sons. Inc. NY, (2008).
Google Scholar
[4]
K. U. Kainer, Metal Matrix Composites, Custom-Made Materials for Automotive and Aerospace Engineering, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2006).
DOI: 10.1080/10426910701884301
Google Scholar
[5]
G. Yamamoto, M Omori, T Hashida and H Kimura, A novel structure for carbon nanotube reinforced alumina composites with improved mechanical properties, Nanotechnology, 19 (2008) 315708 (7pp).
DOI: 10.1088/0957-4484/19/31/315708
Google Scholar
[6]
T.A. Cruse, B.J. Polzin, J.J. Picciolo, D. Sing, R.N. Tsaliagos and K.C. Goretta, Alumina Composites for Oxide/Oxide Fibrous Monoliths, Proceedings of the 24th Annual Cocoa Beach Conference, the American Ceramic Society, January 23-28, 2000, Cocoa Beach, FL.
DOI: 10.1002/9780470294628.ch69
Google Scholar
[7]
M. Mujahid. M. I. Qureshi, M. Islam, and A.A. Khan, Processing and Microstructure of Alumina-Based Composites, ASM International, JMEPEG, 8 (1999) 496-500.
DOI: 10.1361/105994999770346828
Google Scholar
[8]
Javier Gonzalez-Benito and Dania Olmos, Efficient dispersion of nanoparticles in the thermoplastic polymers, Plastics Research Online, 2010 Society of Plastics Engineers (SPE).
Google Scholar
[9]
Chu Lie Wu, Ming Qiu Zhang, Min Zhi Rong, Klaus Friedrich, Tensile performance improvement of low nanoparticles filled-polypropylene composites, Composites Science and Technology 62 (2002) 1327-1340.
DOI: 10.1016/s0266-3538(02)00079-9
Google Scholar
[10]
Zhu Z.K., Yang Y, Yin J, Qi Z.N., Preparation and properties of organosoluble poluimide/silica hybride materials by sol-gel process, Journal of Applied Polymer Science, 73 (1999) 2977-84.
DOI: 10.1002/(sici)1097-4628(19990929)73:14<2977::aid-app22>3.0.co;2-j
Google Scholar
[11]
Douce J, Boilot J.P., Biteau J, Scodellaro L, Jimenez A., Effect of filler size and surface condition of nano-sized silica particles in polysiloxane coatings, Thin Solid Films, 466 (2004) 114-22.
DOI: 10.1016/j.tsf.2004.03.024
Google Scholar
[12]
T. Ahmad, O. Mamat Characterization and Properties of Iron-Silica Sand Nanoparticles Composites, Journal of Defects and Diffusion in Ceramics XII, 316-317 (2011) 97-106.
DOI: 10.4028/www.scientific.net/ddf.316-317.97
Google Scholar
[13]
Wilson Acchar, Microstructure of alumina s reinforced with tungsten carbide, Journal of Materials Science, 41 (2006) 3299-3302.
DOI: 10.1007/s10853-005-5457-z
Google Scholar
[14]
S.M.L. Nai, J.V.M. Kuma, M.E. Alam, X. L Zhong, P. Babaghorbani, and M. Gupta, "Using Microwave-Assisted Powder Metallurgy Route and Nano-sized Reinforcement to develop High-Strength Solder Composites.
DOI: 10.1007/s11665-009-9481-z
Google Scholar
[15]
Bartczak Z, Argon A.S., Cohen R.E., and Weinberg M., Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles, Polymer, 40 (1999) 2347-65.
DOI: 10.1016/s0032-3861(98)00444-3
Google Scholar
[16]
Dekkers M.E.J., Heikens D., The effect of interfacial adhesion on the tensile behaviour of polystyrene-glass-bead composites, Journal of Applied Polymer Science, 28 (1983) 2809-15.
DOI: 10.1002/app.1983.070281220
Google Scholar