Membrane Separation of CO2 from Natural Gas: A State-of-the-Art Review on Material Development

Article Preview

Abstract:

Natural gas (NG) processing and membrane technology are two very important fields that are of great significance due to increasing demand for energy as well as separation of gas mixtures. While NG is projected to be the number one primary source of energy by 2050, membrane separation is a commercially successful competitor to other separation techniques for energy efficient gas separation processes [1]. Most of the NG produced in the world is coproduced with acid gases such as CO2 which need to be removed to increase the caloric value of NG. A comprehensive review of research efforts in CO2 separation from natural gas is required to capture details of the current scientific and technological progresses on the development of new membrane materials with better separation performance, and the improvement of properties of the existing ones. This paper presents the progress that has been achieved in eliminating the limitations that dominate the large scale application of membrane materials at the present time. Various polymers that have been developed to resist plasticization and the method employed to fabricate these polymers are highlighted. Also the range of plasticization pressures (together with corresponding selectivities and permeabilities at these pressures) that have so far been achieved by these fabrication methods is presented. It is believed that this review will serve as a good reference source especially for research in design and development of membrane materials with better resistance to CO2-induced plasticization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-147

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Qiu, C. -C. Chen, L. Xu, L. Cui, D.R. Paul, W. Koros, Macromolecules, 44 (2011) 6046–6056.

Google Scholar

[2] Y. Xiao, B.T. Low, S.S. Hosseini, T.S. Chung, D.R. Paul, Progress in Polymer Science 34 (2009 ) 561–580.

Google Scholar

[3] Chevron, http: /www. chevron. com/deliveringenergy/naturalgas/, (2012).

Google Scholar

[4] J.K. Adewole, L. Jensen, U.A. Al-Mubaiyedh, N. von Solms, I.A. Hussein, Journal of Polymer Research, 19 (2012) 1-11.

Google Scholar

[5] D. Yergin, Natural Gas, in: N. Armaroli, V. Balzani (Eds. ) Energy for a Sustainable World: From the Oil Age to a Sun-Powered Future, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2011, pp.69-84.

DOI: 10.1002/9783527633593

Google Scholar

[6] A.L. Kohl, R. Nielsen, Gas Purification, Gulf Professional Publishing, (1997).

Google Scholar

[7] j.G. Speight, Natural Gas: A Basic Handbook, Gulf Publishing Company, Houston, (2007).

Google Scholar

[8] K. Scott, R. Hughes, Introduction to Industrial Membrane Processes, Industrial Membrane Separation Technology, Blackie Academic and Professional, London, 1996, pp.1-7.

DOI: 10.1007/978-94-011-0627-6_1

Google Scholar

[9] P.S. Ghosh, Associates, (2008).

Google Scholar

[10] A.J. Kidnay, W.R. Parrish, D.G. McCartney, Fundamentals of Natural Gas Processing, 2nd ed., Taylor & Francis Group, Boca Raton, (2011).

Google Scholar

[11] R.W. Baker, Membrane and Applications, John Wiley & Sons Ltd, London, (2006).

Google Scholar

[12] R.W. Baker, Ind. Eng. Chem. Res., 41 (2002) 1393-1411.

Google Scholar

[13] M. Askari, Y. Xiao, P. Li, T. -S. Chung, Journal of Membrane Science 390– 391 (2012 ) 141– 151.

Google Scholar

[14] C.A. Scholes, K.H. Smith, S.E.S. Kentish, G. W., International Journa lof Greenhouse Gas Control 4(2010 ) 739–755.

Google Scholar

[15] T.M. Murphy, G.T. Offord, D.R. Paul, Fundamentals of Membrane Gas Separation, in: E. Drioli, L. Giorno (Eds. ) Membrane Operations. Innovative Separations and Transformations, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009, pp.63-82.

DOI: 10.1002/9783527626779.ch4

Google Scholar

[16] C. Liu, S. Kulprathipanja, A.M.W. Hillock, S. Husain, W.J. Koros, Recent Progress in Mixed-Matrix Membranes, in: N.N. Li, A.G. Fane, W.S.W. Ho, T. Matsuura (Eds. ) Advanced Membrane Technology and Applications, John Wiley & Sons, Inc., New Jersey, USA, 2008, pp.789-820.

DOI: 10.1002/9780470276280.ch30

Google Scholar

[17] Y. Li, T.S. Chung, Journal of Membrane Science, 308 (2008) 128-135.

Google Scholar

[18] Y. Li, T. -S. Chung, Y. Xiao, Journal of Membrane Science 325 (2008) 23–27.

Google Scholar

[19] J.S. Lee, W. Madden, W.J. Koros, Journal of Membrane Science, 350 (2010) 232-241.

Google Scholar

[20] M. -B. Hagg, Membrane for Gas Separation, in: A.K. Pabby, S.S.H. Rivzi, A.M. Sastre (Eds. ) Handbook of Membrane Separations: Chemical, Pharmaceautical, Food, and Biotechnological Applications, CRC Press, Boca Raton, 2009, pp.65-105.

DOI: 10.1080/10826070903304248

Google Scholar

[21] M. Mulder, Basic Principles of Membrane Technology, Kluwer Academic Publishers, Dordrecht, (1996).

Google Scholar

[22] W.K. Koros, A. Krotochvil, S. Shu, S. Husain, Energy and Environmental Issues and Impacts of Membranes in Industry, in: E. Drioli, L. Giorno (Eds. ) Membrane Operations Innovative Separations and Transformations, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2009, pp.139-165.

DOI: 10.1002/9783527626779.ch7

Google Scholar

[23] A.M.W. Hillock, S.J. Miller, W.J. Koros, Journal of Membrane Science, 314 (2008) 193-199.

Google Scholar

[24] T. -L. Chew, A.L. Ahmad, S. Bhatia, Advances in Colloid and Interface Science 153 (2010) 43 –57.

Google Scholar

[25] X. Chen, D. Rodrigue, S. Kaliaguine, Separation and Purification Technology, 86 (2012) 221-233.

Google Scholar

[26] A.M.W. Hillock, W.J. Koros, Macromolecules, 40 ( 2007) 583-587.

Google Scholar

[27] Y. Li, T.S. Chung, Journal of Membrane Science, 350 (2010) 226-231.

Google Scholar

[28] M.A. Aroon, A.F. Ismail, M.M. Montazer-Rahmati, T. Matsuura, Separation and Purification Technology, 72 (2010) 194-202.

DOI: 10.1016/j.seppur.2010.02.009

Google Scholar

[29] K. Ghosal, B.D. Freeman, Polymer for Advanced Technologies, 5 (1994) 673-697.

Google Scholar

[30] B.D. Freeman, I. Pinnau, Polymeric Materials for Gas Separations, Polymer Membranes for Gas and Vapor Separation, American Chemical Society, 1999, pp.1-27.

DOI: 10.1021/bk-1999-0733.ch001

Google Scholar

[31] H.B. Park, Y.M. Lee, Polymeric membrane materials and potential use in gas separation, in: N.N. Li, A.G. Fane, W.S. Winston Ho, T. Matsuura (Eds. ) Advanced Membrane Technology and Applications, John Wiley & Sons, Hoboken, 2008, p.633–664.

DOI: 10.1002/9780470276280.ch24

Google Scholar

[32] R.W. Baker, K. Lokhandwala, Ind. Eng. Chem. Res., 47 (2008) 2109-2121.

Google Scholar

[33] D. Grainger, M.B. Hagg, International Journal of Hydrogen Energy, 33 (2008) 2379-2388.

Google Scholar

[34] J.D. Way, D.L. Roberts, Separation Science and Technology, 27 (1992) 29-41.

Google Scholar

[35] H.A. Meinema, R.W.J. Dirrix, H.W. Brinkman, R.A. Terpstra, J. Jekerle, P.H. Kösters, Interceram, 54 (2005) 86-91.

Google Scholar

[36] T. -S. Chung, L.Y. Jianga, Y. Lia, S. Kulprathipanja, Prog. Polym. Sci. , 32 (2007) 483–507.

Google Scholar

[37] D.Q. Vu, W.J. Koros, S.J. Miller, Journal of Membrane Science, 221 (2003) 233–239.

Google Scholar

[38] P. Bernardo, E. Drioli, G. Golemme, Ind. Eng. Chem. Res. , 48 (2009) 4638–4663.

DOI: 10.1021/ie8019032

Google Scholar

[39] H. Cong, M. Radosz, B.F. Towler, Y. Shen, Separation and Purification Technology 55 (2007) 281–291.

Google Scholar

[40] S.D. Kelman, B.W. Rowe, C.W. Bielawski, S.J. Pas, A.J. Hill, D.R. Paul, B.D. Freeman, Journal of Membrane Science 320 (2008) 123–134.

DOI: 10.1016/j.memsci.2008.03.064

Google Scholar

[41] S.S. Dhingra, E. Marand, Journal of Membrane Science, 141 (1998) 45 - 63.

Google Scholar

[42] M.B. Hagg, A. Lindbrathen, Ind Eng Chem Res, 44 (2005) 7668-7675.

Google Scholar

[43] C.J. Geankoplis, Transport Processes and Unit Operations, 3rd ed., Prentice Hall, New Jersey, (1993).

Google Scholar

[44] M.R. Pixton, D.R. Paul, Polymer, 36 (1995) 3165.

Google Scholar

[45] L.M. Robeson, Journal of Membrane Science, 62 (1991) 165-185.

Google Scholar

[46] L.M. Robeson, Journal of Membrane Science 320 (2008 ) 390–400.

Google Scholar

[47] P.M. Budd, N.B. McKeown, D. Fritsch, Y. Yampolskii, Gas Permeation Parameters and Other Physicochemical Properties of a Polymer of Intrinsic Microporosity (PIM-1), in: Y. Yampolskii, B. Freeman (Eds. ) Membrane Gas Separation, John Wiley & Sons Ltd, West Sussex, 2010, pp.29-42.

DOI: 10.1002/9780470665626.ch2

Google Scholar

[48] H.B. Park, S.H. Han, C.H. Jung, Y.M. Lee, A.J. Hill, Journal of Membrane Science, 359 (2010) 11–24.

Google Scholar

[49] S. Kim, S.H. Han, Y.M. Lee, Journal of Membrane Science 403– 404 (2012) 169– 178.

Google Scholar

[50] S.H. Han, J.E. Lee, K. -J. Lee, H.B. Park, Y.M. Lee, Journal of Membrane Science, 357 (2010) 143–151.

Google Scholar

[51] J.I. Choi, C.H. Jung, S.H. Han, H.B. Park, Y.M. Lee, Journal of Membrane Science, 349 (2010) 358–368.

Google Scholar

[52] J.D. Wind, D.R. Paul, W.J. Koros, Journal of Membrane Science 228 (2004 ) 227–236.

Google Scholar

[53] C.A. Scholes, G.Q. Chen, G.W. Stevens, S.E. Kentish, Journal of Membrane Science, 346 (2010) 208-214.

Google Scholar

[54] A. Bos, I.G.M. Pünt, M. Wessling, H. Strathmann, Journal of Membrane Science, 155 (1999) 67-78.

DOI: 10.1016/s0376-7388(98)00299-3

Google Scholar

[55] H. Lin, B.D. Freeman, Journal of Membrane Science 239 (2004 ) 105–117.

Google Scholar

[56] A.M. Kratochvil, W.J. Koros, Macromolecules, 41 (2008) 7920- 7927.

Google Scholar

[57] X.Y. Chen, D. Rodrigue, S. Kaliaguine, Separation and Purification Technology, 86 (2012) 221–233.

Google Scholar

[58] A.L. Khan, X. Li, I.F.J. Vankelecom, Journal of Membrane Science 372 (2011) 87–96.

Google Scholar

[59] A.L. Khan, X. Li, I.F.J. Vankelecom, Journal of Membrane Science, 380 (2011) 55-62.

Google Scholar

[60] J. Xiao, Y. Hu, Q. Kong, L. Song, Z. Wang, Z. Chen, W. Fan, Polymer Bulletin, 54 (2005) 271–278.

Google Scholar

[61] S.S. Hosseini, N. Peng, T.S. Chung, Journal of Membrane Science, 349 (2010) 156-166.

Google Scholar

[62] C. Staudt-Bickel, W. J. Koros, Journal of Membrane Science, 155 (1999) 145-154.

Google Scholar

[63] P.S. Tin, T.S. Chung, Y. Liu, R. Wang, S.L. Liu, K.P. Pramoda, Journal of Membrane Science, 225 (2003) 77-90.

Google Scholar

[64] T. -S. Chung, J. Ren, R. Wang, D. Li, Y. Liu, K.P. Pramoda, C. Cao, W.W. Loh, Journal of Membrane Science, 214 (2003) 57-69.

Google Scholar

[65] S.S. Hosseini, N. Peng, T.S. Chung, Journal of Membrane Science 349 (2010) 156–166.

Google Scholar

[66] A.F. Ismail, N. Yaacob, Journal of Membrane Science 275 (2006) 151–165.

Google Scholar

[67] L. Jiang, Journal of Membrane Science, 240 (2004) 91-103.

Google Scholar

[68] Y. Li, T.S. Chung, S. Kulprathipanja, Aiche Journal, 53 (2007) 610-616.

Google Scholar

[69] X.Y. Chen, O.G. Nik, D. Rodrigue, S. Kaliaguine, Polymer, 53 (2012) 3269-3280.

Google Scholar