[1]
S. Mrowec and T. Werber, Modern Scaling-Resistant Materials, ed. National Bureau of Standards and National Science Foundation, Washington D.C., (1982).
Google Scholar
[2]
P. Kofstad, High Temperature Corrosion, ed. Elsevier Applied Science, London and New York, (1988).
Google Scholar
[3]
N. Birks, G.H. Meier and F. S Pettit, Introduction to the high temperature oxidation of metals, Cambridge, University Press, (2009).
Google Scholar
[4]
D. Naumienko, L. Singheiser, W.J. Quadakkers, Oxidation Limited of FeCrAl Based Alloys During Thermal Cyclic, in Proc. EFC Workshop, Frankfurt/Main, 1999, p.287.
Google Scholar
[5]
M. Beukenberg, Thermal Fatigue Evaluation of EB-PVD TBCs with Different Bond Coats, in Proc. Turbine Forum 2006, Advances Coatings for High Temperatures, Nice, April 26-28, (2006).
Google Scholar
[6]
A. K. Agarwal, Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines", Progress in Energy and Combustion Science, 33 (2007) 233-271.
DOI: 10.1016/j.pecs.2006.08.003
Google Scholar
[7]
B. Singh, J. Korstad, Y.C. Sharma, A critical review on corrosion of compression ignition (CI) engine parts by biodiesel and biodiesel blends and its inhibition, Renewable and Sustainable Energy Reviews, 16 (2012) 3401-3408.
DOI: 10.1016/j.rser.2012.02.042
Google Scholar
[8]
M.H. Jayed, H.H. Masjuki, M.A. Kalam, T.M.I. Mahlia, M. Husnawan, A.M. Liaquat, Prospects of dedicated biodiesel engine vehicles in Malaysia and Indonesia, Renewable and Sustainable Energy Reviews, 15 (2011) 220-235.
DOI: 10.1016/j.rser.2010.09.002
Google Scholar
[9]
A.S.M.A. Haseeb, M.A. Fazal, M.I. Jahirul, H.H. Masjuki, Compatibility of automotive materials in biodiesel: A review, Fuel, 90 (2011) 922-931.
DOI: 10.1016/j.fuel.2010.10.042
Google Scholar
[10]
Directive 2003/30/EC of the European Parliament and of the Council of 8 May 2003 on the Promotion of the use of biofuels or other renewable fuels for transport, Official Journal of the European Union, 2003, L 123/43-46.
DOI: 10.1017/cbo9780511610851.033
Google Scholar
[11]
Z.W. Yu, X.L. Xu, Failure analysis and metallurgical investigatiojn of diesel engine exhaust valves, Engineering Failure Analysis 13 (2006) 673-682.
DOI: 10.1016/j.engfailanal.2004.10.018
Google Scholar
[12]
C.G. Scott, A.T. Riga, H. Hong, The erosion-corrosion of nickel-base diesel engine exhaust valves, Wear 181-183 (1995) 485-494.
DOI: 10.1016/0043-1648(95)90162-0
Google Scholar
[13]
D. Schlager, C. Theiler, H. Kohn, Protection against high temperature corrosion with laser welded claddings – Applied and tested on exhaust valve discs of large diesel engines burning heavy fuel oil, Materials and Corrosion, 53 (2002) 103-110.
DOI: 10.1002/1521-4176(200202)53:2<103::aid-maco103>3.0.co;2-r
Google Scholar
[14]
M. Velliangiri, A.S. Krishnan, An experimental investigation of performance and emission in ethanol fuelled direct injection internal combustion engines with zirconia coating, Journal of Energy Technologies and Policy 2 (2012) 42-53.
Google Scholar
[15]
P. Lawrence, P.K. Mathews, B. Deepanraj, Experimental investigation on zirconia coated high compression spark ignition with ethanol as fuel, Journal of Scientific and Industrial Research, 70 (2011) 789-794.
Google Scholar
[16]
T. Hejwowski, Investigations of corrosion resistance of Fe-, Ni- and Co-based hardfacings, Vacuum, 80 (2006) 1386-1390.
DOI: 10.1016/j.vacuum.2006.01.021
Google Scholar
[17]
Z. Grzesik, K. Adamaszek, Z. Jurasz, S. Mrowec, Corrosion of valve steels in combustion gases of diesel engines under thermal shock conditions, Defect and Diffusion Forum, 323-325 (2012) 327-332.
DOI: 10.4028/www.scientific.net/ddf.323-325.327
Google Scholar
[18]
A. Galerie, High Temperature Corrosion of Chromia-forming Iron, Nickel and Cobalt-base Alloys in Shreir's Corrosion, 4th Edition, Elsevier Ltd., Amsterdam, The Netherland, 2010, vol. 1, pp.583-645.
DOI: 10.1016/b978-044452787-5.00076-7
Google Scholar
[19]
P.F. Tortorelli and M.P. Brady, Design of High Temperature Alloys in Shreir's Corrosion, 4th Edition, Elsevier Ltd., Amsterdam, The Netherland, 2010, vol. 1, pp.541-582.
Google Scholar
[20]
B.A. Pint, Design strategies for new oxidation-resistant high temperature alloys in Developments in High-temperature Corrosion and Protection of Materials, Woodhead Publishing in Materials, Cambridge, England, 2008, pp.398-432.
DOI: 10.1533/9781845694258.2.398
Google Scholar
[21]
J. Jedliński, Z. Żurek, M. Homa, G. Smoła, J. Camra, The Oxide Scale Growth Mechanism on Fe20Cr5Al+RE Alloy in SO2+O2, Defect and Diffusion Forum, 289-292 (2009) 541-55.
DOI: 10.4028/www.scientific.net/ddf.289-292.541
Google Scholar
[22]
J. Jedlinski, J.L. Grosseau-Poussard, M. Nocuń, G. Smoła, K. Kowalski, J. Dąbek, A. Rakowska, G. Bonnet, The Early Stages of the Scale Growth on FeCrAl(+RE)-Type Alumina Formers, Materials Science Forum, 696 (2011) 70-75.
DOI: 10.4028/www.scientific.net/msf.696.70
Google Scholar
[23]
J. Jedlinski, J-L. Grousseau-Poussard, G. Bonnet, K. Kowalski, A. Bernasik, G. Smola, M. Nocun, Scale growth process at 1473 K on unmodified and yttrium- or chromium- implanted β-NiAl, Materials and Corrision, 612 (2011) 490-495.
DOI: 10.1002/maco.201005852
Google Scholar