Design and Development of Nb-W-Mo Alloy Membrane for Hydrogen Separation and Purification

Article Preview

Abstract:

The concept for alloy design of Nbbased hydrogen permeable membrane is applied to NbWMo ternary system. The alloying effects of tungsten and molybdenum on the solubility of hydrogen, the resistance to hydrogen embrittlement, the hydrogen permeability and diffusivity are investigated in a fundamental manner. It is found that the addition of tungsten and molybdenum into niobium decreases the hydrogen solubility. As a result, the resistance to hydrogen embrittlement improves and higher hydrogen pressures can be applied to the NbWMo alloy membrane. It is shown that the designed Nb5mol%W5mol%Mo alloy membrane with single solid solution phase exhibits excellent hydrogen permeability together with strong resistance to hydrogen embrittlement. In addition, it is found that the alloying of tungsten and molybdenum with niobium enhances the hydrogen diffusivity. In fact, the activation energy for hydrogen diffusion decreases in the order, pure Nb > Nb5mol%W > Nb5mol%W5mol%Mo.

You might also be interested in these eBooks

Info:

[1] S.N. Paglieri and J.D. Way: Separation and Purification Methods 31 (2002) 1.

Google Scholar

[2] R. Buxbaum and A. Kinney: Ind. Eng. Chem. Res. 35 (1995) 530.

Google Scholar

[3] T. Nambu, K. Shimizu, Y. Matsumoto, R. Rong, H. Yukawa, M. Morinaga and I. Yasuda: J. Alloys Compd. 446-447 (2007) 588.

Google Scholar

[4] H. Yukawa, T. Nambu, Y. Matsumoto, N. Watanabe, G.X. Zhang and M. Morinaga: Mater. Trans., 49 (2008), 2202.

Google Scholar

[5] M. Matsumoto, H. Yukawa and T. Nambu: Metall. J. LXIII (2010) 74.

Google Scholar

[6] G.X. Zhang, H. Yukawa, T. Nambu, Y. Matsumoto and M. Morinaga: Int. J. Hydrogen Energy, 35 (2010) 1245.

Google Scholar

[7] N.L. Peterson: Diffusion in Refractory Metals, WADD Technical Report 60-793 (1960).

Google Scholar

[8] Y. Fukai: Shokubai ( Catalysts & Catalysis), 33 (1991) 254 (in Japanese).

Google Scholar

[9] E. Serra, M. Kemali, A. Perujo and D.K. Ross: Metall. Mater. Trans. A, 29 A (1998) 1023.

Google Scholar

[10] C. Nishimura, M. Komaki, S. Hwang and M. Amano: Int. J. Hydrogen Energy, 330-332 (2002) 902.

Google Scholar

[11] K. Ishikawa, S. Tokui and K. Aoki: Intermetallics 17 (2009) 109.

Google Scholar

[12] H.C. Bauer, J. Völkl, J. Tretkowski, G. Alefeld: Z. Physik B 29 (1978) 17.

Google Scholar

[13] O.J. Zojal, R.M. Cotts: Phys. Rev B 11 (1975) 2443.

Google Scholar

[14] P.E. Mauger, W.D. Williams, R.M. Cotts: J Phys. Chem. Solids 42 (1981) 821.

Google Scholar

[15] H. Yukawa, G.X. Zhang, N. Watanabe, M. Morinaga, T. Nambu and Y. Matsumoto: J. Alloys Compd., 476 (2009) 102.

Google Scholar

[16] A.C. Bailey, N. Waterhouse and B. Yates: J. Phys. C: Solid St Phys 2 (1969) 769.

Google Scholar

[17] T. Nambu: Ph. D thesis, Nagoya University, Japan (2006) (in Japanese).

Google Scholar

[18] M.A. Pick, R. Bausch: J. Phys. F: Metal Phys. 6 (1976) 1751.

Google Scholar