Li Diffusion in (110) Oriented LiNbO3 Single Crystals

Article Preview

Abstract:

Li diffusion is investigated in Li2O-deficient, (110) oriented LiNbO3 single crystals in the temperature range between 523 and 673 K by secondary ion mass spectrometry. A thin layer of ion-beam sputtered isotope enriched 6LiNbO3 was used as a tracer source, which allows one to study pure isotope interdiffusion. The diffusivities coincide with those of (001) oriented single crystals and follow the Arrhenius law with an activation enthalpy of 1.33 eV. The results prove the existence of a three-dimensional diffusion mechanism.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Gopalan, V. Dierolf, D.A. Scrymgeour: Annu. Rev. Mater. Res. Vol. 37 (2008), p.449.

Google Scholar

[2] K.K. Wong (ed. ): Properties of Lithium Niobate (Inspec, London, 2002).

Google Scholar

[3] T. Volk, M. Wöhlecke: Lithium Niobate (Springer, Berlin, 2010).

Google Scholar

[4] P. Lerner, C. Legras, J. Dumas: J. Cryst. Growth Vol. 3 (1968), p.231.

Google Scholar

[5] P.F. Bordui, R.G. Norwood, D.H. Jundt, M.M. Fejer: J. Appl. Phys. Vol. 71 (1992), p.875.

Google Scholar

[6] V. Gopalan, T.E. Mitchell, Y. Furukawa, K. Kitamura: Appl. Phys. Lett. Vol. 72 (1998), p. (1981).

Google Scholar

[7] O.F. Schirmer, O. Thiemann, M. Wöhlecke: J. Phys. Chem. Solids Vol. 52 (1991), p.185.

Google Scholar

[8] A. Prokhorov, I. Kuzminov: Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, 1990).

Google Scholar

[9] S.C. Abrahams, P. Marsh: Acta Crystallogr. B Vol. 42 (1986), p.61.

Google Scholar

[10] H. Xu, D. Lee, S.B. Sinnott, V. Dierolf, V. Gopalan, S.R. Phillpot: J. Phys.: Condens. Matter Vol. 22 (2010), p.135002.

DOI: 10.1088/0953-8984/22/13/135002

Google Scholar

[11] J. Shi, H. Fritze, G. Borchardt, K. -D. Becker: Phys. Chem. Chem. Phys. Vol. 13 (2011), p.6925.

Google Scholar

[12] P. Heitjans, S. Indris: J. Phys.: Cond. Matt. Vol. 15 (2003), p. R1257.

Google Scholar

[13] P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening: Faraday Discuss. Vol. 134 (2007), p.67.

DOI: 10.1039/b602887j

Google Scholar

[14] M. Wilkening, W. Kuechler, P. Heitjans: Phys. Rev. Lett. Vol. 97 (2006), p.065901.

Google Scholar

[15] Y. Saito, H. Yamamoto, O. Nakamura, H. Kageyama, H. Ishikawa, T. Miyoshi, M. Matsuoka: J. Power. Sourc. Vol. 82 (1999), p.772.

Google Scholar

[16] R. Böhmer, K. Jeffrey, M. Vogel: Prog. Nucl. Magn. Reson. Spectrosc. Vol. 50 (2007), p.87.

Google Scholar

[17] M. Wilkening P. Heitjans: J. Phys.: Condens. Matter Vol. 18 (2006), p.9849.

Google Scholar

[18] M. Masoud, P. Heitjans: Defect Diffus. Forum Vols. 237-240 (2005), p.1016.

Google Scholar

[19] S.C. Jeong, I. Katayama, H. Kawakami, Y. Watanabe, H. Ishiyama, N. Imai, Y. Hirayama, H. Miyatake, M. Sataka, H. Sugai, S. Okayasu, S.I. Ichikawa, K. Nishio, S. Mitsuoka, T. Nakanoya, M. Yahagi, T. Hashimoto, K. Takada, M. Watanabe, T. Ishikawa, A. Iwase: J. Phase Equilib. Diff. Vol. 26 (2005).

DOI: 10.1007/s11669-005-0037-0

Google Scholar

[20] S.C. Jeong, I. Katayama, H. Kawakami, Y. Watanabe, H. Ishiyama, N. Imai, Y. Hirayama, H. Miyatake, M. Sataka, H. Sugai, S. Okayasu, S.I. Ichikawa, K. Nishio, S. Mitsuoka, T. Nakanoya, T. Hashimoto, M. Yahagi, T. Hashimoto: Jap. J. Appl. Phys. Vol. 47 (2008).

DOI: 10.1143/jjap.47.6413

Google Scholar

[21] T. Okumura, T. Fukutsuka, Y. Uchimoto, N. Sakai, K. Yamaji, H. Yokokawa: J Power Sources Vol. 189 (2009), p.643.

DOI: 10.1016/j.jpowsour.2008.09.043

Google Scholar

[22] Y.J. Yu, G. H. Frischat, W. Beier: J. Non-Cryst. Solids Vol. 112 (1989), p.399.

Google Scholar

[23] V.B. Ptashnik, T.Y. Dunaeva, I.V. Myasnikov: Inorg. Mater. Vol. 21 (1985), p.1814.

Google Scholar

[24] A. Buksak, G.H. Frischat, G. Heide: J. Non-Cryst. Solids Vol. 353 (2007), p.2447.

Google Scholar

[25] Y. Oishi, Y. Kqamei, M. Akiyama, T. Yanagi: J. Nuc. Mater. Vol. 87 (1979), p.341.

Google Scholar

[26] H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber, H. Scherrer: J. Appl. Phys. Vol. 93 (2003), p.907.

Google Scholar

[27] H. Schmidt, U. Geckle, M. Bruns: Phys. Rev. B. Vol. 74 (2006), p.045203.

Google Scholar

[28] E. Hüger, U. Tietze, D. Lott, H. Bracht, E. E. Haller, D. Bougeard, H. Schmidt: Appl. Phys. Lett. Vol. 93 (2008), p.162104.

DOI: 10.1063/1.3002294

Google Scholar

[29] H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber, H. Scherrer: J. Appl. Phys. Vol. 93 (2003), p.907.

Google Scholar

[30] H.D. Fuchs, W. Walukiewicz, E.E. Haller, W. Dondl, R. Schorer, G. Abstreiter, A.I. Rudnev, A.V. Tikhomirov, V.I. Ozhogin: Phys. Rev. B Vol. 51 (1995), p.16817.

Google Scholar

[31] H.A. Bracht, H.H. Silvestri, and E.E. Haller: Solid State Commun. Vol. 133 (2005), p.727.

Google Scholar

[32] D. Birnie III: J. Mater. Sci. Vol. 28 (1993), p.302.

Google Scholar

[33] M. Wilkening, D. Bork, S. Indris, P. Heitjans: Phys. Chem. Chem. Phys. Vol. 4 (2002), p.3246.

Google Scholar

[34] M. Wilkening, P. Heitjans: Solid State Ionics Vol. 177 (2006), p.3031.

Google Scholar

[35] T. K. Halstead: J. Chem. Phys. Vol. 53 (1970), p.3427.

Google Scholar

[36] A. Mehta, E. K. Chang, D. M. Smyth: J. Mater. Res. Vol. 6 (1991), p.851.

Google Scholar

[37] D. Bork, P. Heitjans: J. Phys. Chem. B Vol. 105 (2001), p.9162.

Google Scholar

[38] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P, Heitjans, H. Schmidt: Phys. Chem. Chem. Phys. Vol. 14 (2012), p.2427.

DOI: 10.1039/c2cp23548j

Google Scholar

[39] B. Ruprecht, J. Rahn, H. Schmidt, P. Heitjans: Z. Phys. Chem. Vol. 226 (2012), p.431.

Google Scholar

[40] J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt: Def. Diff. Forum Vols. 323-325 (2012), p.69.

DOI: 10.4028/www.scientific.net/ddf.323-325.69

Google Scholar

[41] J. Crank: The Mathematics of Diffusion, (Oxford University Press, Oxford, 1975).

Google Scholar