[1]
V. Gopalan, V. Dierolf, D.A. Scrymgeour: Annu. Rev. Mater. Res. Vol. 37 (2008), p.449.
Google Scholar
[2]
K.K. Wong (ed. ): Properties of Lithium Niobate (Inspec, London, 2002).
Google Scholar
[3]
T. Volk, M. Wöhlecke: Lithium Niobate (Springer, Berlin, 2010).
Google Scholar
[4]
P. Lerner, C. Legras, J. Dumas: J. Cryst. Growth Vol. 3 (1968), p.231.
Google Scholar
[5]
P.F. Bordui, R.G. Norwood, D.H. Jundt, M.M. Fejer: J. Appl. Phys. Vol. 71 (1992), p.875.
Google Scholar
[6]
V. Gopalan, T.E. Mitchell, Y. Furukawa, K. Kitamura: Appl. Phys. Lett. Vol. 72 (1998), p. (1981).
Google Scholar
[7]
O.F. Schirmer, O. Thiemann, M. Wöhlecke: J. Phys. Chem. Solids Vol. 52 (1991), p.185.
Google Scholar
[8]
A. Prokhorov, I. Kuzminov: Physics and Chemistry of Crystalline Lithium Niobate (Hilger, Bristol, 1990).
Google Scholar
[9]
S.C. Abrahams, P. Marsh: Acta Crystallogr. B Vol. 42 (1986), p.61.
Google Scholar
[10]
H. Xu, D. Lee, S.B. Sinnott, V. Dierolf, V. Gopalan, S.R. Phillpot: J. Phys.: Condens. Matter Vol. 22 (2010), p.135002.
DOI: 10.1088/0953-8984/22/13/135002
Google Scholar
[11]
J. Shi, H. Fritze, G. Borchardt, K. -D. Becker: Phys. Chem. Chem. Phys. Vol. 13 (2011), p.6925.
Google Scholar
[12]
P. Heitjans, S. Indris: J. Phys.: Cond. Matt. Vol. 15 (2003), p. R1257.
Google Scholar
[13]
P. Heitjans, M. Masoud, A. Feldhoff, M. Wilkening: Faraday Discuss. Vol. 134 (2007), p.67.
DOI: 10.1039/b602887j
Google Scholar
[14]
M. Wilkening, W. Kuechler, P. Heitjans: Phys. Rev. Lett. Vol. 97 (2006), p.065901.
Google Scholar
[15]
Y. Saito, H. Yamamoto, O. Nakamura, H. Kageyama, H. Ishikawa, T. Miyoshi, M. Matsuoka: J. Power. Sourc. Vol. 82 (1999), p.772.
Google Scholar
[16]
R. Böhmer, K. Jeffrey, M. Vogel: Prog. Nucl. Magn. Reson. Spectrosc. Vol. 50 (2007), p.87.
Google Scholar
[17]
M. Wilkening P. Heitjans: J. Phys.: Condens. Matter Vol. 18 (2006), p.9849.
Google Scholar
[18]
M. Masoud, P. Heitjans: Defect Diffus. Forum Vols. 237-240 (2005), p.1016.
Google Scholar
[19]
S.C. Jeong, I. Katayama, H. Kawakami, Y. Watanabe, H. Ishiyama, N. Imai, Y. Hirayama, H. Miyatake, M. Sataka, H. Sugai, S. Okayasu, S.I. Ichikawa, K. Nishio, S. Mitsuoka, T. Nakanoya, M. Yahagi, T. Hashimoto, K. Takada, M. Watanabe, T. Ishikawa, A. Iwase: J. Phase Equilib. Diff. Vol. 26 (2005).
DOI: 10.1007/s11669-005-0037-0
Google Scholar
[20]
S.C. Jeong, I. Katayama, H. Kawakami, Y. Watanabe, H. Ishiyama, N. Imai, Y. Hirayama, H. Miyatake, M. Sataka, H. Sugai, S. Okayasu, S.I. Ichikawa, K. Nishio, S. Mitsuoka, T. Nakanoya, T. Hashimoto, M. Yahagi, T. Hashimoto: Jap. J. Appl. Phys. Vol. 47 (2008).
DOI: 10.1143/jjap.47.6413
Google Scholar
[21]
T. Okumura, T. Fukutsuka, Y. Uchimoto, N. Sakai, K. Yamaji, H. Yokokawa: J Power Sources Vol. 189 (2009), p.643.
DOI: 10.1016/j.jpowsour.2008.09.043
Google Scholar
[22]
Y.J. Yu, G. H. Frischat, W. Beier: J. Non-Cryst. Solids Vol. 112 (1989), p.399.
Google Scholar
[23]
V.B. Ptashnik, T.Y. Dunaeva, I.V. Myasnikov: Inorg. Mater. Vol. 21 (1985), p.1814.
Google Scholar
[24]
A. Buksak, G.H. Frischat, G. Heide: J. Non-Cryst. Solids Vol. 353 (2007), p.2447.
Google Scholar
[25]
Y. Oishi, Y. Kqamei, M. Akiyama, T. Yanagi: J. Nuc. Mater. Vol. 87 (1979), p.341.
Google Scholar
[26]
H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber, H. Scherrer: J. Appl. Phys. Vol. 93 (2003), p.907.
Google Scholar
[27]
H. Schmidt, U. Geckle, M. Bruns: Phys. Rev. B. Vol. 74 (2006), p.045203.
Google Scholar
[28]
E. Hüger, U. Tietze, D. Lott, H. Bracht, E. E. Haller, D. Bougeard, H. Schmidt: Appl. Phys. Lett. Vol. 93 (2008), p.162104.
DOI: 10.1063/1.3002294
Google Scholar
[29]
H. Schmidt, G. Borchardt, C. Schmalzried, R. Telle, S. Weber, H. Scherrer: J. Appl. Phys. Vol. 93 (2003), p.907.
Google Scholar
[30]
H.D. Fuchs, W. Walukiewicz, E.E. Haller, W. Dondl, R. Schorer, G. Abstreiter, A.I. Rudnev, A.V. Tikhomirov, V.I. Ozhogin: Phys. Rev. B Vol. 51 (1995), p.16817.
Google Scholar
[31]
H.A. Bracht, H.H. Silvestri, and E.E. Haller: Solid State Commun. Vol. 133 (2005), p.727.
Google Scholar
[32]
D. Birnie III: J. Mater. Sci. Vol. 28 (1993), p.302.
Google Scholar
[33]
M. Wilkening, D. Bork, S. Indris, P. Heitjans: Phys. Chem. Chem. Phys. Vol. 4 (2002), p.3246.
Google Scholar
[34]
M. Wilkening, P. Heitjans: Solid State Ionics Vol. 177 (2006), p.3031.
Google Scholar
[35]
T. K. Halstead: J. Chem. Phys. Vol. 53 (1970), p.3427.
Google Scholar
[36]
A. Mehta, E. K. Chang, D. M. Smyth: J. Mater. Res. Vol. 6 (1991), p.851.
Google Scholar
[37]
D. Bork, P. Heitjans: J. Phys. Chem. B Vol. 105 (2001), p.9162.
Google Scholar
[38]
J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P, Heitjans, H. Schmidt: Phys. Chem. Chem. Phys. Vol. 14 (2012), p.2427.
DOI: 10.1039/c2cp23548j
Google Scholar
[39]
B. Ruprecht, J. Rahn, H. Schmidt, P. Heitjans: Z. Phys. Chem. Vol. 226 (2012), p.431.
Google Scholar
[40]
J. Rahn, E. Hüger, L. Dörrer, B. Ruprecht, P. Heitjans, H. Schmidt: Def. Diff. Forum Vols. 323-325 (2012), p.69.
DOI: 10.4028/www.scientific.net/ddf.323-325.69
Google Scholar
[41]
J. Crank: The Mathematics of Diffusion, (Oxford University Press, Oxford, 1975).
Google Scholar