Fuel-Matrix Chemical Interaction between U-7wt.%Mo Alloy and Mg

Article Preview

Abstract:

A solid-to-solid, U-7wt.%Mo vs. Mg diffusion couple was assembled and annealed at 550°C for 96 hours. Themicrostructurein the interdiffusion zone and the development of concentration profiles were examined via scanning electron microscopy, transmission electron microscopy (TEM) and X-ray energy dispersive spectroscopy. A TEM specimen was prepared at the interface between U-7wt.%Mo andMgusing focused ion beam in-situ lift-out. The U-7wt.%Mo alloy was bonded well tothe Mg at the atomic scale, without any evidence of oxidation, cracks or pores.Despite the good bonding, very little or negligible interdiffusion was observed.This is consistent with the expectation based on negligible solubilities according to the equilibrium phase diagrams. Along with other desirableproperties, Mgis a potential inert matrix or barrier materialfor U-Mo fuel alloy systembeing developed forthe Reduced Enrichment for Research and Test Reactor (RERTR) program.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

199-206

Citation:

Online since:

January 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Keiser D, Hayes S, Meyer M, Clark C. High-density, low-enriched uranium fuel for nuclear research reactors. JOM Journal of the Minerals, Metals and Materials Society 2003; 55: 55.

DOI: 10.1007/s11837-003-0031-0

Google Scholar

[2] Snelgrove JL, Hofman GL, Meyer MK, Trybus CL, Wiencek TC. Development of very-high-density low-enriched-uranium fuels. Nuclear Engineering and Design 1997; 178: 119.

DOI: 10.1016/s0029-5493(97)00217-3

Google Scholar

[3] Wachs D, Keiser D, Meyer M, Burkes D, Clark C, Moore G, Jue J-F, Totev T, Hofman G, Wiencek T, Kim YS, Snelgrove J. High density fuel development for research reactors. Global 2007-Advanced Nuclear Fuel Cycles and Systems, (2007).

Google Scholar

[4] Meyer MK, Hofman GL, Hayes SL, Clark CR, Wiencek TC, Snelgrove JL, Strain RV, Kim KH. Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel. J Nucl Mater 2002; 304: 221.

DOI: 10.1016/s0022-3115(02)00850-4

Google Scholar

[5] Leenaers A, Van den Berghe S, Koonen E, Jarousse C, Huet F, Trotabas M, Boyard M, Guillot S, Sannen L, Verwerft M. Post-irradiation examination of uranium-7 wt% molybdenum atomized dispersion fuel. J Nucl Mater 2004; 335: 39.

DOI: 10.1016/j.jnucmat.2004.07.004

Google Scholar

[6] Perez E, Yao B, Keiser DD, Sohn YH. Microstructural analysis of as-processed U-10 wt. %Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier. J Nucl Mater 2010; 402: 8.

DOI: 10.1016/j.jnucmat.2010.04.016

Google Scholar

[7] Keiser DD, Jue JF, Yao B, Perez E, Sohn Y, Clark CR. Microstructural characterization of U-7Mo/Al-Si alloy matrix dispersion fuel plates fabricated at 500 degrees C. J Nucl Mater 2011; 412: 90.

DOI: 10.1016/j.jnucmat.2011.02.027

Google Scholar

[8] Yao B, Perez E, Keiser Jr DD, Jue J-F, Clark CR, Woolstenhulme N, Sohn Y. Microstructure characterization of as-fabricated and 475 °C annealed U-7 wt. % Mo dispersion fuel in Al-Si alloy matrix. J. Alloys Compd. 2011; 509: 9487.

DOI: 10.1016/j.jallcom.2011.07.048

Google Scholar

[9] Perez E, Keiser D, Sohn Y. Phase Constituents and Microstructure of Interaction Layer Formed in U-Mo Alloys vs Al Diffusion Couples Annealed at 873 K (600 °C). Metall. Mater. Trans. A 2011; 42: 3071.

DOI: 10.1007/s11661-011-0733-9

Google Scholar

[10] Leenaers A, Van den Berghe S, Van Renterghem W, Charollais F, Lemoine P, Jarousse C, Rohrmoser A, Petry W. Irradiation behavior of ground U(Mo) fuel with and without Si added to the matrix. J Nucl Mater 2011; 412: 41.

DOI: 10.1016/j.jnucmat.2011.02.002

Google Scholar

[11] Liu X, Lu TC, Xing ZH, Qian DZ. Effects of different irradiation conditions on swelling performance of U(10)Mo-Al dispersion fuel. Rare Metal Mat. Eng. 2011; 40: 1125.

Google Scholar

[12] Mazaudier F, Proye C, Hodaj F. Further insight into mechanisms of solid-state interactions in UMo/Al system. J Nucl Mater 2008; 377: 476.

DOI: 10.1016/j.jnucmat.2008.04.016

Google Scholar

[13] Komar Varela C, Mirandou M, Aricó S, Balart S, Gribaudo L. Interdiffusion between U(Mo, Pt) or U(Mo, Zr) and Al or Al A356 alloy. J Nucl Mater 2009; 395: 162.

DOI: 10.1016/j.jnucmat.2009.10.050

Google Scholar

[14] Kim Y, Hofman G, Ryu H, Hayes S. Irradiation-enhanced interdiffusion in the diffusion zone of U-Mo dispersion fuel in Al. J Phase Equilib Diff 2006; 27: 614.

DOI: 10.1007/bf02736563

Google Scholar

[15] Ryu H, Park J, Kim C, Kim Y, Hofman G. Diffusion reaction behaviors of U-Mo/Al dispersion fuel. J Phase Equilib Diff 2006; 27: 651.

DOI: 10.1007/bf02736568

Google Scholar

[16] Massalski TB, editor Binary Phase Diagrams, 2nd Ed.: American Society for Metals, (1990).

Google Scholar

[17] Davis JR, editor. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, (1992).

Google Scholar

[18] Wiencek TC, Prokofiev IG, McGann DJ. Development and compatibility of magnesium-matrix fuel plates clad with 6061 aluminum alloy. 1998 International Meeting on Reduced Enrichment for Research and Test Reactors. São Paulo, Brazil, (1998).

Google Scholar

[19] Laxman, S, Franke, B, Kempshall BW, Sohn YH, Giannuzzi LA, Murphy KS. Phase transformations of thermally grown oxide on (Ni, Pt)Al bondcoat during electron beam physical vapor deposition and subsequent oxidation, Surf Coat Technol 2004; 177/8: 121.

DOI: 10.1016/j.surfcoat.2003.08.072

Google Scholar

[20] Perez E, D. D. Keiser J, Yao B, Sohn YH. Interdiffusion in diffusion couples: U-Mo v. Al and Al-Si. 31st International meeting on RERTR. Beijing, China, (2009).

Google Scholar

[21] Sears VF. Neutron scattering lengths and cross sections. Neutron News 1992; 3: 26.

DOI: 10.1080/10448639208218770

Google Scholar