Nanometric AlNi Precipitation in a 84.68 wt.% Cu-11.25 wt.%Al-4.07 Wt%Ni Shape Memory Alloy

Article Preview

Abstract:

A shape memory alloy with a nominal composition of 84.68 wt.% Cu-11.25 wt.%Al-4.07 wt.%Ni, has been studied. Polycrystalline specimens have been quenched into water at room temperature, after heat treatment of 15 minutes at a high temperature of 1123 K. Two successive cycles from room temperature to 923 K and inversely have been performed on the non equilibrium samples. The microstructural study presented in this work has been performed using TEM (Transmission Electron Microscopy) analysis, STEM (Scanning Transmission Electron Microscopy) analysis, X-ray diffraction analysis at a variable temperature. Nanometric phase precipitation of AlNi type was observed to appear in this alloy.

You might also be interested in these eBooks

Info:

[1] H. Funakubo. Shape Memory Alloys, Precision Machinery and Robotics, vol. 1, Gordon and Breach, New York, (1987).

Google Scholar

[2] T.W. Duerig, K.N. Melton, D. Stöcked, C.M. Wayman (Eds. ). Engineering Aspects of Shape Memory Alloys, Butterworths–Heinemann, London, (1990).

Google Scholar

[3] Murray (J.L. ). Al-Cu (Aluminium-Copper) Binary alloy phase diagrams,. Thaddeus B. Massaki (ed) Ohio: American Society for metals, metals park, (U.S.A. ), (1986), Tome 1, pp.103-108.

Google Scholar

[4] V. Recarte, I. Hurtado, J. Herreros , M.L. No´, J. San Juan. Scripta Mater, (1996); 34: 255.

Google Scholar

[5] E.G. Petzow, E. Effenberg. Ternary Alloys, vol. 4. Wienheim: VCH; (1991).

Google Scholar

[6] P. Brezina. Inter Metals Rew, (1982); 27: 77.

Google Scholar

[7] Y.S. Sun, G.W. Lorimer, N. Ridley. Metall Trans, (1990); 21A: 575.

Google Scholar

[8] V. Recarte, O.A. Lambri, R.B. Pérez-Sáez, M.L. Nó and J. San Juan. Appl Phys Lett. 70, 3513 (1997).

DOI: 10.1063/1.119217

Google Scholar

[9] J.I. Pérez-Landazábal, V. Recarte, R.B. Pérez-Sáez, M.L. Nó, J. Campo, and J. San Juan. Appl Phys Lett. 81, 1794 (2002).

DOI: 10.1063/1.1504883

Google Scholar

[10] M. Bouabdallah, G. Cizeron. Eur. Phys. J. AP 1, 163-172 (1998).

Google Scholar

[11] V. Recarte, J.I. Pérez-Landazábal, A. Ibarra, M.L. Nó, J. San Juan. Mater. Sci. Eng. A 378 (2004) 238.

Google Scholar

[12] J.I. Pérez-Landazábal, V. Recarte and V. Sánchez-Alarcos. J. Phys.: Condens. Matter 17 (2005) 4223-4236.

DOI: 10.1088/0953-8984/17/26/019

Google Scholar

[13] S.M. Chentouf, M. Bouabdallah, J-C. Gachon, E. Patoor, A. Sari. J. Alloys Comp. 470 (2009), 507-514.

DOI: 10.1016/j.jallcom.2008.03.009

Google Scholar

[14] S.M. Chentouf, M. Bouabdallah, H. Cheniti, A. Eberhardt, E. Patoor, A. Sari. Journal of Materials Characterization, 61 (2010) 1187-1193.

DOI: 10.1016/j.matchar.2010.07.009

Google Scholar