Fluorescence Study of Ionic Intercalation/De-Intercalation in the Reaction-Diffusion Mediated Polymorphic Transition of a Class of Nanolayered Material

Article Preview

Abstract:

The mechanism of the intercalation/de-intercalation processes during the formation of α-Co (OH)2 and its conversion to β-Co (OH)2 is carefuly examined using a new non-invasive technique in a gel matrix. The incorporation of rhodamine molecules inside the interlayer gallery of α samples allows us to monitor the variation of its fluorescence intensity throughout different stages of the reactions. We show after calculating the corresponding activation energies that the formation/transformation reactions exhibit different dynamics depending on the nature of intercalated anions. Moreover, the morphological changes that are revealed from scanning electron micrographs suggest the occurence of an Ostawald ripening mechanism in which perfect and stable crystals are produced at the expense of smaller ones.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 334-335)

Pages:

235-240

Citation:

Online since:

February 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F. Cavani, F. Trifirò and A. Vaccari: Elsevier (1991).

Google Scholar

[2] A. I. Khan and D. O'Hare: Journal of Materials Chemistry Vol. 12 (2002), p.3191–3198.

Google Scholar

[3] R. Ma, Z. Liu, K. Takada, K. Fukuda, Y. Ebina, Y. Bando and T. Sasaki: Inorganic chemistry Vol. 45 (2006), pp.3964-3969.

Google Scholar

[4] Z. Liu, R. Ma, M. Osada, K. Takada and T. Sasaki: Journal of the American Chemical Society Vol. 127 (2005), pp.13869-13874.

Google Scholar

[5] H. El-Batlouni, H. El-Rassy and M. Al-Ghoul: The Journal of Physical Chemistry A Vol. 112 (2008), pp.7755-7757.

Google Scholar

[6] Y. Du, K. M. Ok and D. O'Hare: J. Mater. Chem. Vol. 18 (2008), pp.4450-4459.

Google Scholar

[7] N. Iyi, K. Fujii, K. Okamoto and T. Sasaki: Applied Clay Science Vol. 35 (2007), pp.218-227.

Google Scholar

[8] W. Zhang, J. He and C. Guo: Applied Clay Science Vol. 39 (2008), pp.166-171.

Google Scholar

[9] N. Iyi, K. Kurashima and T. Fujita: Chemistry of Materials Vol. 14 (2002), pp.583-589.

Google Scholar

[10] A. M. Fogg, J. S. Dunn, S. G. Shyu, D. R. Cary and D. O'Hare: Chemistry of Materials Vol. 10 (1998), pp.351-355.

Google Scholar

[11] A. M. Fogg, A. J. Freij and G. M. Parkinson: Chemistry of Materials Vol. 14 (2001), pp.232-234.

Google Scholar

[12] G. R. Williams, A. J. Norquist and D. O'Hare: Chemical Communications (2003), pp.1816-1817.

Google Scholar

[13] G. R. Williams and D. O'Hare: Chemistry of Materials Vol. 17 (2005), pp.2632-2640.

Google Scholar

[14] S. Hovmöller, A. Sjögren, G. Farrants, M. Sundberg and B. O. Marinder: Nature Vol. 311 (1984), pp.238-241.

DOI: 10.1038/311238a0

Google Scholar

[15] X. Zou and S. Hovmoller: Acta Crystallographica Section A: Foundations of Crystallography Vol. 64 (2007), pp.149-160.

Google Scholar

[16] W. Ostwald: Z. Phys. Chem Vol. 22 (1897), pp.289-330.

Google Scholar