Determination of Thermal Diffusivity and Influence of Defect Structure in Alloys Based on the Fe-Al System

Article Preview

Abstract:

Alloys of the Fe-Al system are interesting due to occurrence of long-range order and many thermal vacancies at high temperature, which lead to not only significant hardening, but also cause changes of physical properties. High temperature diffusion is conditioned by structural defects in solids, such as vacancies, foreign atoms and dislocations influencing thermal characteristics of a solid solution, among others the thermal diffusivity coefficient. Measurement of thermal diffusivity was performed at room temperature using the laser flash method. For characterization of the defect structure, positron annihilation lifetime spectroscopy was used. The data were presented for alloys with 28 and 38 at.% aluminium without chromium and containing 5 at. % Cr addition. The results showed that thermal diffusivity decreased with aluminium content and deviation from stoichiometry. In the studies, different structural defects in the alloys were observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

129-134

Citation:

Online since:

March 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N.S. Stoloff: Materials Science and Engineering A Vol. 258 (1998) p.1

Google Scholar

[2] S.C. Deevi, V.K. Sikka: Intermetallics Vol. 4 (1996) p.357

Google Scholar

[3] H. Mehrer: Materials Transactions JIM Vol. 37 (1996) p.1259

Google Scholar

[4] D.G. Morris, J.C. Joye, M.: Philosophical Magazine A Vol. 69 5 (1994) p.961

Google Scholar

[5] Y.A. Chang, L.M. Pike, C.T. Liu, A.R Bilbrey, D.S. Stone: Intermetallics Vol. 1 (1993) p.107

Google Scholar

[6] N. de Diego, F. Plazaola, J.A. Jiménez, J. Serna, J. del Río: Acta Materialia Vol. 53 (2005) p.163

Google Scholar

[7] J. Wolff, M. Franz, A. Broska, R. Kerl, M. Weinhagen, B. Köhler, M. Brauer, F. Faupel, Th. Hehenkamp: Intermetallics Vol. 7 (1999) p.289

DOI: 10.1016/s0966-9795(98)00105-8

Google Scholar

[8] M. Fähnle, B. Meyer, G. Bester: Intermetallics Vol. 7 (1999) p.1307

Google Scholar

[9] J. Kansy: Nuclear Instruments and Methods in Physics Research A Vol. 374 (1996) p.235

Google Scholar

[10] J. Kansy, A. Hanc, M. Jabłońska, E. Bernstock-Kopaczyńska, D. Giebel: Materials Science Forum Vol. 666 (2011) p.50

DOI: 10.4028/www.scientific.net/msf.666.50

Google Scholar

[11] H.–E. Schaefer, R. Wurschum, M. Sob, T. Zak, W. Z. Yu, W. Eckert, F. Banhart: Physical Review B Vol. 41, 17 (1990) p.11869

Google Scholar

[12] M. Jabłońska : Materials Science and Engineering Vol. 22 (2011) 012013

Google Scholar

[13] Y. Ortega, N. de Diego, F. Plazaola, J.A. Jiménez, J. del Río: Intermetallics Vol. 15 (2007) p.177

DOI: 10.1016/j.intermet.2006.05.004

Google Scholar

[14] O. Melikhova, J. Čížek, J. Kuriplach, I. Procházka, M. Cieslar, A. Anwand, G. Brauer: Intermetallics Vol. 18 (2010) p.592

DOI: 10.1016/j.intermet.2009.10.013

Google Scholar

[15] O. Kubaschewski: IRON-binary phase diagrams; Berlin, Springer-Verlag (1982) p.5

Google Scholar

[16] R. Kerl, J. Wolff, Th. Hehenkamp: Intermetallics Vol. 7(1999) p.301

Google Scholar

[17] T. Haraguchi, F. Hori, R. Oshima, M. Kogachi: Intermetallics Vol. 9 (2001) p.763

Google Scholar

[18] J. Wolff, M. Franz, Broska A., Köhler B., Hehenkamp Th.: Materials Science and Engineering A Vol. 239-240 (1997) p.213

DOI: 10.1016/s0921-5093(97)00584-4

Google Scholar

[19] A. Broska, J. Wolff, M. Franz, Th. Hehenkamp: Intermetallics Vol. 7 (1999) p.259

Google Scholar

[20] M.B. Jabłońska, M. Mikuśkiewicz, A. Śmiglewicz, E. Bernstock-Kopaczyńska: Defect and Diffusion Forum Vol. 326-328 (2012) p.573

DOI: 10.4028/www.scientific.net/ddf.326-328.573

Google Scholar

[21] M.A. Morris, O. George, D.G. Morris: Materials Science and Engineering A Vol. 258 (1998) p.99

Google Scholar