3D Thermosolutal Convection within Porous Media

Article Preview

Abstract:

The present work aims to study convection and heat transfer and mass in a porous cubic cavity. The configuration considered is a cavity cube with vertical walls left and right are subjected to temperatures required while others are impermeable and adiabatic. We realized that the results depend on several characteristic parameters, and general correlations are established for the calculation of heat and mass transfer, according to various studied parameters. The study focuses on the influence of the control parameters on the structure of the flow, heat and mass transfer.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

27-39

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D.A. Nield, Adrian Bejan, Convection in Porous Media, 4th ed., Springer, (2013).

Google Scholar

[2] A. D. Nield, Onset of thermohaline convection in a porous medium. Water Resources Res. 4 (1968) 553-560.

DOI: 10.1029/wr004i003p00553

Google Scholar

[3] F. S. Oueslati, R. Bennacer, H. Sammouda and A. Belghith, Thermosolutal convection during melting in a porous media saturated with aqueus solution, Numerical Heat Transfer, Part A 54 (2008) 315–330.

DOI: 10.1080/10407780802084637

Google Scholar

[4] Mohamed A., Bennacer R., Double diffusion, natural convection in an enclosure filled with saturated porous medium subjected to cross gradients; stably stratified fluid, Int. J of Heat and Mass Transfer vol. 45 (2002) 3725–3740.

DOI: 10.1016/s0017-9310(02)00093-5

Google Scholar

[5] F. S. Oueslati, R. Bennacer, H. Sammouda and A. Belghith, Numerical study of thermosolutal convection in anisotropic porous media subject to cross-fulxes of heat and mass, Journal of Porous Media 9(1) (2006) 1–13.

DOI: 10.1615/jpormedia.v9.i1.50

Google Scholar

[6] Murray B., T. and Chen C., F., Double-Diffusive Convection in porous Medium, J. Fluid Mechanics. 201 (1989) 147-166.

DOI: 10.1017/s002211208900087x

Google Scholar

[7] Karimi-Fard M., Charrier-Mojtabi M.C. and Vafai K., Non-Darcien Effects on Double-Diffusive Convection, within a Porous Medium. Num. Heat transfer. a 31 (1997) 837-852.

DOI: 10.1080/10407789708914067

Google Scholar

[8] M. Kaviancy, Principals of heat Transfer in porous media, Springer, (1995).

Google Scholar

[9] H. Darcy, Les fontaines publiques de la ville de Dijon, Victor Dalmont, Paris, 1856.

Google Scholar

[10] H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res., Vol. A1 (1947) 27-34.

DOI: 10.1007/bf02120313

Google Scholar

[11] G. Neale et Nader, W, Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium, The Canadian J. Chem. Eng., 52 (1974) 475-478.

DOI: 10.1002/cjce.5450520407

Google Scholar

[12] R. C. Gilver et Alltobelli S. A., A determination of effective viscosity for the Brinkman-Forcheimer flow model, J. Fluid Mech., 258 (1994) 355-370.

Google Scholar

[13] J. C. Ward, Turbulent flow in porous media, J. Hyd. Div. ASCE, 90 (1964) 1-12.

Google Scholar

[14] R. A. Wooding, Steady state free thermal convection of liquid in a saturated permeable medium, J. Fluid Mech., 2 (1957) 273-285.

DOI: 10.1017/s0022112057000129

Google Scholar

[15] Ri. Ben Yedder, F. Erchiqui, Convective flow and heat transfer in a tall porous cavity side-cooled with temperature profile, Heat and mass Transfer 52 (2009) 5712-5718.

DOI: 10.1016/j.ijheatmasstransfer.2009.08.016

Google Scholar

[16] H. Nawaf Saeid, Conjugate natural convection in a vertical porous layer sandwiched by finite thickness walls, Heat and Mass transfer, 34 (2007) 210-216.

DOI: 10.1016/j.icheatmasstransfer.2006.11.003

Google Scholar

[17] A. Haghshenas, M. Rafati Nasr, M.H. Rahimian, Numerical simulation of natural convection in an open-ended square cavity filled with porous medium by lattice Boltzmann method, Int. Journal of Heat and Mass Transfer, 37 (2010) 1513-1519.

DOI: 10.1016/j.icheatmasstransfer.2010.08.006

Google Scholar

[18] P. Vasseur, A.A. mahmid, Etude analytique et numérique de la convection naturelle dans une couche poreuse de Brinkman doublement diffusive, Int.J. of heat and mass transfer, 42 (1999) 2991-3005.

DOI: 10.1016/s0017-9310(98)00223-3

Google Scholar

[19] W. J. Chang, H. C. Lin, Natural convection in a finite wall rectangular cavity filled with an anisotropic porous medium, Int. J. Heat and Mass Transfer, 37 N°2 (1994) 303-312.

DOI: 10.1016/0017-9310(94)90101-5

Google Scholar

[20] H. F. Oztop, Natural convection in partially cooled and inclined porous rectangular enclosures, Int. Journal of Thermal Sciences, 46 (2007) 149-156.

DOI: 10.1016/j.ijthermalsci.2006.04.009

Google Scholar

[21] Y. Varol, F. Hakan Oztop, I. Pop, Natural convection in a diagonally divided square cavity filled with a porous medium, International Journal of Thermal Sciences, 48 (2009) 1405-1415.

DOI: 10.1016/j.ijthermalsci.2008.12.015

Google Scholar

[22] R. Bennacer, H. Beji, F. Oueslati et A. Belghith, Multiple natural convection solution in porous media under cross temperature and concentration gradients, Numerical Heat Transfer, Part A 39 (2001) 553-567.

DOI: 10.1080/104077801750178860

Google Scholar

[23] O. Rahli, R. Bennacer, K. Bouhadef, and D. E. Ameziani, Three-dimensional mixed convection heat and mass transfer in rectangular duct: Case of longitudinal rolls, Num. Heat Transfer, Part A 59 (2011) 349-371.

DOI: 10.1080/10407782.2011.549081

Google Scholar

[24] J. Ravnik, L. Skerget, and Z. Zunic, Velocity-Vorticity Formulation for 3-D Natural Convection in an Inclined Enclosure by BEM, Int. J. Heat Mass Transfer, 51 (2008) 4517-4527.

DOI: 10.1016/j.ijheatmasstransfer.2008.01.018

Google Scholar