A Two-Phase Flow Solver for Incompressible Viscous Fluids, Using a Pure Streamfunction Formulation and the Volume of Fluid Technique

Article Preview

Abstract:

Accurate multi-phase flow solvers at low Reynolds number are of particular interest for the simulation of interface instabilities in the co-processing of multilayered material. We present a two-phase flow solver for incompressible viscous fluids which uses the streamfunction as the primary variable of the flow. Contrary to fractional step methods, the streamfunction formulation eliminates the pressure unknowns, and automatically fulfills the incompressibility constraint by construction. As a result, the method circumvents the loss of temporal accuracy at low Reynolds numbers. The interface is tracked by the Volume-of-Fluid technique and the interaction with the streamfunction formulation is investigated by examining the Rayleigh-Taylor instability and broken dam problem. The results of the solver are in good agreement with previously published theoretical and experimental results of the first and latter mentioned problem, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-19

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Dooley, K.S. Hyun, K. Hughes, An experimental study on the effect of polymer viscoelasticity on layer rearrangement in coextruded structures, Polym. Eng. Sci. 38 (1998) 1060-1071.

DOI: 10.1002/pen.10274

Google Scholar

[2] A.J. Chorin, Numerical solution of Navier-Stokes equation, Math. Comp. 22 (1968) 745-762.

DOI: 10.1090/s0025-5718-1968-0242392-2

Google Scholar

[3] J.B. Perot, An analysis of the fractional step method, J. Comput. Phys. 108 (1993) 51-58.

Google Scholar

[4] M. -J. Ni, M.A. Abdou, A bridge between projection methods and SIMPLE type methods for incompressible Navier-Stokes equations, Int. J. Numer. Meth. Engng. 72 (2007) 1490-1512.

DOI: 10.1002/nme.2054

Google Scholar

[5] S. Turek, A comparative study of time-stepping techniques for the incompressible Navier-Stokes equations: from fully implicit non-linear schemes to semi-implicit projection methods, Int. J. Numer. Methods Fluids 22 (1996) 987-1011.

DOI: 10.1002/(sici)1097-0363(19960530)22:10<987::aid-fld394>3.0.co;2-7

Google Scholar

[6] J.K. Dukowicz, Approximate factorization as a high order splitting for the implicit incompressible flow equations, J. Comput. Phys. 102 (1992) 336-347.

DOI: 10.1016/0021-9991(92)90376-a

Google Scholar

[7] D.L. Brown, R. Cortez, M.L. Minion, Accurate projection methods for the incompressible Navier–Stokes equations, J. Comput. Phys. 168 (2001) 464–499.

DOI: 10.1006/jcph.2001.6715

Google Scholar

[8] W. Chang, F. Giraldo, J.B. Perot, Analysis of the exact fractional step method, J. Comput. Phys. 180 (2002) 183-199.

DOI: 10.1006/jcph.2002.7087

Google Scholar

[9] R. Kupferman, A central-difference scheme for a pure stream function formulation of the incompressible viscous flow, SIAM J. Sci. Comput. 23. 1 (2001) 1-18.

DOI: 10.1137/s1064827500373395

Google Scholar

[10] T.L. Chow, Mathematical Methods for Physicists: A concise introduction, Cambridge University Press, Cambridge, (2000).

Google Scholar

[11] M.A. Alves, P,J. Oliveira, F.T. Pinho, A convergent and universally bounded interpolation scheme for the treatment of advection, Int. J. Numer. Methods Fluids 41 (2003) 47-75.

DOI: 10.1002/fld.428

Google Scholar

[12] J.E. Pilliod, E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199 (2004) 465-502.

DOI: 10.1016/j.jcp.2003.12.023

Google Scholar

[13] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39. 1 (1981) 201-225.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[14] J.B. Bell, D.L. Marcus, A second-order projection method for variable density flows, J. Comput. Phys. 101 (1992) 334. 348.

DOI: 10.1016/0021-9991(92)90011-m

Google Scholar

[15] E.G. Puckett, A.S. Almgren, et al., A high-order projection method for tracking fluid interfaces in variable density incompressible flows, J. Comput. Phys. 130 (1997) 269-282.

DOI: 10.1006/jcph.1996.5590

Google Scholar

[16] P.G. Drazin, Introduction to Hydrodynamic Stability, Cambridge University Press, Cambridge, (2002).

Google Scholar

[17] B.J. Daly, Numerical study of two fluid Rayleigh-Taylor instability, Phys. Fluids 10. 2 (1967) 297-307.

DOI: 10.1063/1.1762109

Google Scholar

[18] G. Tryggvason, Numerical simulations of the Rayleigh-Taylor Instability, J. Comput. Phys. 75 (1988) 253-282.

Google Scholar

[19] J. Wu, S. -T. Yu, B. -N. Jiang, Simulation of two-fluid flows by the least-squares finite element method using a continuum surface tension model, Int. J. Numer. Meth. Engng. 42 (1998) 583-600.

DOI: 10.1002/(sici)1097-0207(19980630)42:4<583::aid-nme341>3.0.co;2-m

Google Scholar

[20] T. Nakayama, M. Mori, An Eulerian finite element method for time-dependent free surface problems in hydrodynamics, Int. J. Numer. Methods Fluids 22 (1996) 175-194.

DOI: 10.1002/(sici)1097-0363(19960215)22:3<175::aid-fld352>3.0.co;2-f

Google Scholar

[21] S. Shin, W.I. Lee, Finite element analysis of incompressible viscous flow with moving free surface by selective volume of fluid method, Int. J. Heat Fluid Flow 21 (2000) 197-206.

DOI: 10.1016/s0142-727x(99)00083-1

Google Scholar

[22] M.S. Kim, W.I. Lee, A new VOF-based numerical scheme for the simulation of fluid flow with free surface. Part I: New free surface-tracking algorithm and its verification, Int. J. Numer. Methods Fluids 42 (2003) 765-790.

DOI: 10.1002/fld.553

Google Scholar

[23] J.C. Martin, W.J. Moyce, Part IV. An experimental study of the collapse of liquid columns on a rigid horizontal plane, Philos. Trans. R. Soc. London, Ser. A 244. 882 (1952) 312–324.

DOI: 10.1098/rsta.1952.0006

Google Scholar