An Improved Heat Equation to Model Ductile-to-Brittle Failure Mode Transition at High Strain Rates Using Fully Coupled Thermal-Structural Finite Element Analysis

Article Preview

Abstract:

In this paper a universal heat equation for fully coupled thermal structural finite element analysis of deformable solids capable of predicting ductile-to-brittle failure mode transition at high strain rates is presented. In the problem mathematical formulation appropriate strain measures describing the onset and the growth of ductile and total damage and heat generation rate per unit volume to model dissipation-induced heating have been employed, which were extended with the heat equation. The model was implemented into a finite element code utilizing an improved weak form for updated Lagrangian formulation, an extended NoIHKH material model for cyclic plasticity of metals applicable in wide range of strain rates and the Jaumann rate in the form of the Green-Naghdi rate in the co-rotational Cauchy’s stress objective integration. The model verification showed excellent agreement with the modelled experiment at low strain rates. Plastic bending of a cantilever has been studied at higher strain rates. A few selected analysis results are presented and briefly discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-23

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. J. Skrzypek, A. W. Ganczarski, F. Rusttichelli, H. Egner, Advanced materials and structures for extreme operating conditions, Springer Verlag, Berlin, 2008.

Google Scholar

[2] A. Needleman and V. Tvergaard, An analysis of dynamic, ductile crack growth in a double edge cracked specimen. Int. J. Fracture, 49 (1991), 41-47.

DOI: 10.1007/bf00013502

Google Scholar

[3] A. Needleman and V. Tvergaard, A numerical study of void distribution effect on dynamic, ductile crack growth. Engng. Fracture Mech., 38 (1991), 157-173.

DOI: 10.1016/0013-7944(91)90079-g

Google Scholar

[4] A. Needleman and V. Tvergaard, Mesh effects in the analysis of dynamic ductile crack growth. Engng. Fracture Mech., 47 (1994), 75-91.

DOI: 10.1016/0013-7944(94)90239-9

Google Scholar

[5] A. Needleman and V. Tvergaard., Analysis of a brittle-ductile transition under dynamic shear loading, Int. J. Solids Structures, 32(17-18), (1995), 2571-2590.

DOI: 10.1016/0020-7683(94)00283-3

Google Scholar

[6] G.A., Maugin, The thermomechanics of plasticity and fracture, Cambridge University Press, Cambridge, 1992.

Google Scholar

[7] J.E. Field, S.M. Walley*, W.G. Proud, H.T. Goldrein, C.R. Siviour, Review of experimental techniques for high rate deformation and shock studies, International Journal of Impact Engineering, 30 (2004) 725–775.

DOI: 10.1016/j.ijimpeng.2004.03.005

Google Scholar

[8] H.N. Krishna Teja Palleti a, S. Gurusamy a, Santosh Kumar a, R. Soni b, B. John b, R. Vaidya b, A. Bhoge b, N.K. Naik, Ballistic impact performance of metallic targets, Materials and Design, 39 (2012) 253-263.

DOI: 10.1016/j.matdes.2012.02.033

Google Scholar

[9] Bidyapati Mishra a,*, P.K. Jena a, B. Ramakrishna a, V. Madhu a, T.B. Bhat a, N.K. Gupta, Effect of tempering temperature, plate thickness and presence of holes on ballistic impact behavior and ASB formation of a high strength steel, International Journal of Impact Engineering, 44 (2012) 17-28.

DOI: 10.1016/j.ijimpeng.2011.12.004

Google Scholar

[10] T. Børvik, M. Langseth, O.S. Hopperstad, K.A. Malo, Ballistic penetration of steel plates, International Journal of Impact Engineering, 22. (1999) 855-886.

DOI: 10.1016/s0734-743x(99)00011-1

Google Scholar

[11] V.N. Wijayathunga ∗, D.C. Webb, Experimental evaluation and finite element simulation of explosive forming of a square cup from a brass plate assisted by a lead plug, Journal of Materials Processing Technology, 172 (2006) 139–145

DOI: 10.1016/j.jmatprotec.2005.09.014

Google Scholar

[12] D.J. Mynors*, B. Zhang, Applications and capabilities of explosive forming, Journal of Materials Processing Technology, 125–126 (2002) 1–25.

DOI: 10.1016/s0924-0136(02)00413-2

Google Scholar

[13] F. Abdi, K. Bowcutt, C. Godines, J. Bayandor, Collision provoked failure sequencing in space reentry vehicles, Computers and Structures, 89 (2011) 930–939.

DOI: 10.1016/j.compstruc.2011.01.021

Google Scholar

[14] M.J. Buehler, F.F. Abraham, H. Gao, "Hyperelasticity governs dynamic fracture at a critical length scale, Nature, 426, (2003) 141-146.

DOI: 10.1038/nature02096

Google Scholar

[15] J.T. Foster, W. Chen, V.K. Luk, Dynamic crack initiation toughness of 4340 steel at constant loading rates, Engineering Fracture Mechanics, 78 (2011) 1264–1276.

DOI: 10.1016/j.engfracmech.2011.02.019

Google Scholar

[16] B. N. Cox, H. Gao, D. Gross, D. Rittel, Modern topics and challenges in dynamic fracture, Journal of the Mechanics and Physics of solids, 53 (2005) 565–596.

DOI: 10.1016/j.jmps.2004.09.002

Google Scholar

[17] A. Conde, B. J. Fernandez, J. J. De Damborenea, Characterization of the SCC behaviour of 8090 Al-L1 alloy by means of the slow-strain-rate technique, Corrosion Science, Vol. 40, No. 1, (1998) 91-102.

DOI: 10.1016/s0010-938x(97)00117-0

Google Scholar

[18] F. Trebuňa, F. Šimčák, J. Bocko, P. Trebuňa, M. Pástor, Patrik Šarga, Analysis of crack initiation in the press frame and innovation of the frame to ensure its further operation, Engineering Failure Analysis, 18 (2011) 244–255.

DOI: 10.1016/j.engfailanal.2010.09.004

Google Scholar

[19] B. Li, A. Kidane, G. Ravichandran, M. Ortiz, Verification and validation of the Optimal Transportation Meshfree (OTM) simulation of terminal ballistics, International Journal of Impact Engineering, 42 (2012) 25-36.

DOI: 10.1016/j.ijimpeng.2011.11.003

Google Scholar

[20] B. Li, F. Habbal and M. Ortiz, Optimal transportation meshfree approximation schemes for fluid and plastic flows, Int. J. Numer. Meth. Engng; 83, (2010) 1541–1579.

DOI: 10.1002/nme.2869

Google Scholar

[21] S. Li, W.K. Liu, A. J. Rosakis, T. Belytschko, W. Hao, Mesh-free galerkin simulations of dynamic shear band propagation and failure mode transition, International Journal of Solids and Structures, No. 39, p.1213–1240.

DOI: 10.1016/s0020-7683(01)00188-3

Google Scholar

[22] J.C. Simo, T.J.R. Hughes, Computational inelasticity, Springer, NY, 1998.

Google Scholar

[23] P. Perzyna, Fundamental problems in viscoplasticity, in Advances in Applied Mechanics, Vol. 9, Academic, Press, New York, p.243–377.

DOI: 10.1016/s0065-2156(08)70009-7

Google Scholar

[24] P. Perzyna, Thermodynamic theory of viscopplasticity, in Advances in Applied Mechanics, Vol. 11, Academic, Press, New York, p.313–354.

Google Scholar

[25] J.D. Clayton, Continuum multiscale modeling of finite deformation plasticity and anisotropic damage in polycrystals, Theoretical and Applied Fracture Mechanics, No. 45, p.163–185.

DOI: 10.1016/j.tafmec.2006.03.001

Google Scholar

[26] A.G. Varghese, R.C. Batra, Constitutive equations for thermomechanical deformations of glassy polymers, International Journal of Solids and Structures, No. 46, p.4079–4094.

DOI: 10.1016/j.ijsolstr.2009.08.006

Google Scholar

[27] A.D. Mulliken, M.C. Boyce, Mechanics of the rate-dependent elastic–plastic deformation of glassy polymers from low to high strain rates, International Journal of Solids and Structures, No. 43, p.1331–1356.

DOI: 10.1016/j.ijsolstr.2005.04.016

Google Scholar

[28] J. Richeton, S. Ahzi, K.S. Vecchio, F.C. Jiang, A. Makradi, Modeling and validation of the large deformation inelastic response of amorphous polymers over a wide range of temperatures and strain rates, International Journal of Solids and Structures, No. 44, p.7938–7954.

DOI: 10.1016/j.ijsolstr.2007.05.018

Google Scholar

[29] R.C. Batra, B.M. Love, Mesoscale analysis of shear bands in high strain rate deformations of tungsten/nickel-iron composites, Journal of Thermal Stresses, Vol. 28, No. 6-7, pp.747-782.

DOI: 10.1080/01495730590932724

Google Scholar

[30] A. Rusinek, R. Zaera, J.R. Klepaczko, Constitutive relations in 3-D for a wide range of strain rates and temperatures – Application to mild steels, International Journal of Solids and Structures, No. 44, p.5611–5634.

DOI: 10.1016/j.ijsolstr.2007.01.015

Google Scholar

[31] R. Zaera, J.A. Rodriguez-Martinez, A. Casado, J. Fernández-Sáez, A. Rusinek, R. Pesci, A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates, International Journal of Plasticity, No. 29, p.77–101.

DOI: 10.1016/j.ijplas.2011.08.003

Google Scholar

[32] M. Kuroda, A. Uenishi, H. Yoshida, A. Igarashi, Ductility of interstitial-free steel under high strain rate tension: Experiments and macroscopic modeling with a physically-based consideration, International Journal of Solids and Structures, No. 43, p.4465–4483.

DOI: 10.1016/j.ijsolstr.2005.06.076

Google Scholar

[33] G.Z. Voyiadjis, F.H. Abed, A coupled temperature and strain rate dependent yield function for dynamic deformations of bcc metals, International Journal of Plasticity, No. 22, pp.1398-1431.

DOI: 10.1016/j.ijplas.2005.10.005

Google Scholar

[34] S. Nemat-Nasser, Plasticity, A treatise on finite deformation of heterogenous inelastic materials, Cambridge University Press, Cambridge, 2004.

Google Scholar

[35] J. Lemaitre, J.L. Chaboche, Mechanics of solid materials, Cambridge university press, Cambridge, 1994.

Google Scholar

[36] P. Rosakis, A.J. Rosakis, G. Ravichandrian, J. Hoodowany, A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals, J. Mech. Phys. ​Solids, 48, (2000) 581-607.

DOI: 10.1016/s0022-5096(99)00048-4

Google Scholar

[37] E. H. Dill, The finite element method for mechanics of solid with ANSYS applications, CRC Press, London, 2012.

Google Scholar

[38] X. Lu, S.V. Hangund, A nonequilibrium irreversible thermodynamics model for material damping, Int. J. Solids. Struct, 44, (2006) 3278-3303.

DOI: 10.1016/j.ijsolstr.2006.09.021

Google Scholar

[39] L. Écsi, P. Élesztős, Moving toward a more realistic material model of a ductile material with failure mode transition, Mat.-wiss. u. Werkstofftech., 43, No. 5, (2012) 379-387.

DOI: 10.1002/mawe.201200969

Google Scholar

[40] L. Écsi, P. Élesztős, Constitutive equation with internal damping for materials under cyclic and dynamic loadings using a fully coupled thermal-structural finite element analysis, Int. J. Multiphysics, 3 2 (2009) 155-165.

DOI: 10.1260/175095409788837829

Google Scholar

[41] R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt, Concepts and applications of finite element analysis, 4. Ed., John Wiley & Sons Ltd., N.Y., 2001.

Google Scholar

[42] L.C. Evans, Partial differential equations, American Mathematical Society, Providence, Rhode Island, 1998.

Google Scholar

[43] G.R. Johnson, W.H. Cook, A Constitutive model and data for metals subjected to large strains, strain rates, and high pressures, Proceedings Of The 7th International Symposium On Ballistics, The Hague, The Netherlands, 1983.

Google Scholar

[44] W.K. Rule, S.E. Jones, A revised form of the Johnson-Cook strength model, International Journal Of Impact Engineering, Vol.21, No. 8, pp.609-624.

DOI: 10.1016/s0734-743x(97)00081-x

Google Scholar

[45] F.J. Zerilli, R.W. Armstrong, Dislocation mechanics based constitutive relations for material dynamics calculations, Journal Of Applied Physics, Vol.61, pp.1816-1825.

DOI: 10.1063/1.338024

Google Scholar

[46] A. Rusinek , R. Zaera, J.R. Klepaczko, Constitutive relations in 3-D for a wide range of strain rates and temperatures – Application to mild steels, International Journal of Solids and Structures, No. 44, p.5611–5634.

DOI: 10.1016/j.ijsolstr.2007.01.015

Google Scholar

[47] R. Zaera, J.A. Rodriguez-Martinez, A. Casado, J. Fernández-Sáez, A. Rusinek, R. Pesci, A constitutive model for analyzing martensite formation in austenitic steels deforming at high strain rates, International Journal of Plasticity, No. 29, p.77–101.

DOI: 10.1016/j.ijplas.2011.08.003

Google Scholar

[48] A. Rusinek, J.A. Rodriguez-Martinez, Thermo-viscoplastic constitutive relation for aluminium alloys, modeling of negative strain rate sensitivity and viscous drag effects, Materials and Design, No. 30, p.4377–4390.

DOI: 10.1016/j.matdes.2009.04.011

Google Scholar

[49] J.R. Klepaczko, A practical stress–strain–strain rate-temperature constitutive relation of the power form, J. Mech. Working Technol.. No. 15, p.143–165.

DOI: 10.1016/0378-3804(87)90031-3

Google Scholar

[50] A. Rusinek, J.R. Klepaczko, Shear testing of sheet steel at wide range of strain rates and a constitutive relation with strain-rate and temperature dependence of the flow stress. Int. J. Plasticity, No. 17, pp.87-115.

DOI: 10.1016/s0749-6419(00)00020-6

Google Scholar

[51] L. Écsi, Extended NOIHKH model usage for cyclic plasticity of metals, Engineering mechanics, Roč. 13, č. 2, 83-92.

Google Scholar

[52] J. Lemaitre, Handbook of material behavior models, Vol. 1, Deformations of materials, Academic press, London, 2001.

Google Scholar

[53] E.A. De Souza Neto, D. Perić, D.R.J. Owen, Computational methods for plasticity, Theory and applications, John Wiley & Sons Ltd., Singapore, 2008.

Google Scholar

[54] M. Šilhavý, The mechanics and thermodynamics of continuous media, Springer-Verlag, Berlin Heidelberg, 1997.

Google Scholar

[55] I. Müller, Thermodynamics, Pitman publishing LTD., London, 1985.

Google Scholar

[56] P. Haupt, Continuum mechanics and theory of materials, second ed., Springer-Verlag, Berlin Heidelberg, 2002.

Google Scholar

[57] J. F. Nye. Physical properties of crystals: Their representation by tensors and matrices. Clarendon Press. Oxford. 1957.

Google Scholar

[58] J. Bonet, R.D. Wood, Nonlinear continuum mechanics for finite element analysis, 2nd. Ed., Cambridge University Press, Cambridge, 2008.

Google Scholar

[59] J.R. Klepazko, A. Rusinek, Experiments on heat generation during plastic deformation and stored energy for TRIP steels, Materials and Design, 30 (2009) 35-48.

DOI: 10.1016/j.matdes.2008.04.048

Google Scholar

[60] F. Trebuňa, F. Šimčák, Príručka experimentálnej mechaniky, Edícia vedeckej a odbornej literatúry, TypoPress, Košice, 2007.

Google Scholar

[61] A. Služalec, An evaluation of the internal dissipation factor in coupled thermoplasticity, Int. J. Non-Lin. Mech., 25 4 (1990) 395-403.

Google Scholar

[62] T. Kuwabara, S. Ikeda, K. Kuroda , Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension, J. Mater. Proc. Technol., No. 80-81, pp.517-523.

DOI: 10.1016/s0924-0136(98)00155-1

Google Scholar

[63] W. Müller, Beitrag zur Charakterisierung von Blechwerkstoffen unter merachsiger Beamspruchung, Springer Verlag, Berlin-Heidelberg, 1996.

Google Scholar

[64] H. Franke, Lexikon der Physik, Franckh'sche Verlagshandlung, W. Keller & Co, Stuttgart, 1959.

Google Scholar

[65] M.L. Pastor, X. Balandraud, M. Grédiac, J.L. Robert, Applying infrared thermography to study the heating of 2024-T3 aluminium specimens under fatigue loading, Infrared Phys. Techn. 51 (2008) 505-515.

DOI: 10.1016/j.infrared.2008.01.001

Google Scholar