Diffusion in an Ensemble of Intersecting Grain Boundaries

Article Preview

Abstract:

Grain boundary (GB) diffusion in an ensemble of three grain boundaries intersecting in the point of GB triple junction is described on the basis of quasi-steady Fisher’s model. Two versions of the configuration of the ensemble are considered, namely, with different number of GBs adjacent to the surface covered with a diffuser source and with different angle between GB and surface. Analytical expressions for the distribution of diffuser concentration along each GB of an ensemble are derived supposing that the GB diffusion fluxes are equal in the GB triple junction. The expressions for the diffuser concentration distribution along GBs in both ensembles include not only diffusion constants (like GB and bulk diffusion coefficients) but also structural characteristics of the ensemble of grain boundaries (i.e. the depth of the triple junction point under the surface and the angle between GBs in the triple junction point). The specific features of diffusion kinetics in the ensembles of different configuration with an angle of 120o (the equilibrium angle in a polycrystal) were revealed by comparing the diffuser concentration distributions in the ensembles and in the single GB.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

121-127

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U. Czubayko, V.G. Sursaeva, G. Gottstein and L.S. Shvindlerman: Acta Mater. Vol. 46 (1998), p.5863.

DOI: 10.1016/s1359-6454(98)00241-9

Google Scholar

[2] E. Rabkin: Interface Sci. Vol. 7 (1999) p.297.

Google Scholar

[3] L. Klinger, E. Rabkin: Interface Sci. Vol. 9 (2001) p.55.

Google Scholar

[4] L. M. Klinger, L. A. Levin and A.L. Peteline: Def. Dif. Forum Vol. 143-147 (1997), p.1523.

Google Scholar

[5] B.B. Straumal, O. Kogtenkova and P. Zięba: Acta Mater. Vol. 56 (2008), p.925.

Google Scholar

[6] V. Traskine, P. Protsenko, Z. Skvortsova and P. Volovitch: Coll. Surf. A Vol. 166 (2000) , p.261.

Google Scholar

[7] B.S. Bokstein, V.A. Ivanov, O.A. Oreshina, A.L. Peteline and S.A. Peteline: Mater. Sci. Eng. Vol. A 302 (2001), p.151.

DOI: 10.1016/s0921-5093(00)01367-8

Google Scholar

[8] L. Klinger, E. Rabkin: Interface Sci. Vol. 6 (1998) p.197.

Google Scholar

[9] L. Klinger, E. Rabkin: Acta Mater. Vol. 47 (1999) p.725.

Google Scholar

[10] A.N. Aleshin, B.S. Bokstein and L.S. Shvindlerman: Poverkhnost. Fizika, Khimiya, Mechanika No 6 (1982), p.1 (in Russian).

Google Scholar

[11] B.B. Straumal, L.M. Klinger and L.S. Shvindlerman: Acta metall. Vol. 32 (1984), p.1355.

Google Scholar

[12] E.I. Rabkin, L.S. Shvindlerman and B.B. Straumal: J. Less-Common Met. Vol. 159 (1990), p.43.

Google Scholar

[13] C. Minkwitz, Chr. Herzig, E. Rabkin and W. Gust: Acta Mater. Vol. 47 (1999) p.1231.

Google Scholar

[14] B.B. Straumal, S.A. Polyakov, E. Bischoff, W. Gust and E. J. Mittemeijer: Interf. Sci. Vol. 9 (2001) 287.

Google Scholar

[15] J. Schölhammer, B. Baretzky, W. Gust, E. Mittemeijer and B. Straumal: Interf. Sci. Vol. 9 (2001) p.43.

DOI: 10.1023/a:1011266729152

Google Scholar

[16] C.L. Bauer and P.E. Tang: Def. Dif. Forum Vol. 66-69 (1989), p.1143.

Google Scholar

[17] L. Berenbaum: J. Appl. Phys. Vol. 42 (1971), p.1971.

Google Scholar

[18] J.C. Fisher: J. Appl. Phys. Vol. 22 (1951), p.74.

Google Scholar

[19] E. Rabkin, W. Gust, L.S. Shvindlerman and A.N. Aleshin: Interf. Sci. Vol. 3 (1996), p.269.

Google Scholar