Specific Features of Interfaces in Cu-Nb Nanocomposites

Article Preview

Abstract:

The structure and properties of multi-rod Cu-Nb composites with the true strain of 10.2 and 12.5 have been studied by TEM, SEM and microhardness measurements. The non-uniform distribution of Nb ribbons throughout the composite cross sections was revealed, at higher strain their structure being more dispersed. In both wires the Cu/Nb interfaces are partly coherent, and the Nb lattice is more distorted at interfaces than in the bulk. The behavior at heating was studied in the temperature range of 300-800оС. In the range of 600-800oC complete coagulation of Nb filaments accompanied with drastic microhardness drop is observed. The thermal stability of Cu-Nb nanocomposites is higher than that of Nb and Cu nanostructured by SPD.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

183-188

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V. Pantsyrnyi: IEEE Trans. Appl. Supercond. Vol. 12 (2002), p.1189.

Google Scholar

[2] V. Pantsyrnyi, A. Shikov, A. Vorobieva et al.: IEEE Trans. Appl. Supercond. Vol. 10 (2000), p.1263.

Google Scholar

[3] A. Shikov, V. Pantsyrnyi, A. Vorobieva, N. Khlebova, A. Silaev: Physica C Vol. 354, No. 1-4 (2001), p.410.

DOI: 10.1016/s0921-4534(01)00109-5

Google Scholar

[4] K. Han, J.D. Embury, J.R. Sims, L.J. Campbell, H.J. Schneider-Muntau, V.I. Pantsyrnyi et al.: Mater. Sci. Eng. A Vol. 267 (1999), p.99.

Google Scholar

[5] J. Bevk, J.P. Harbison and J.L. Bell: J. Appl. Phys. Vol. 49 (1978), p.6031.

Google Scholar

[6] D. Raabe, P. Choi, Y. Li, A. Kostka, X. Savauge F, Lecouturier et al.: MRS Bull. Vol. 35 (2010), p.982.

Google Scholar

[7] V.V. Popov: Phys. Met. Metallogr. Vol. 13, No.13 (2012), p.1257.

Google Scholar

[8] E. Snoeck, F. Lecouturier, L. Thilly, M.J. Casanove, H. Rakoto, G. Coffe et al.: Scripta Mater. Vol. 38, No. 11 (1998), p.1643.

DOI: 10.1016/s1359-6462(98)00080-3

Google Scholar

[9] F. Dupouy, E. Snoeck, M.J. Casanove, C. Roucau, J.P. Peyrade and S. Askenazy: Scripta Mater. Vol. 34, No. 7 (1996), p.1067.

DOI: 10.1016/1359-6462(95)00632-x

Google Scholar

[10] X. Sauvage, L. Renaud, B. Deconihout, D. Blavette, D. Ping, H. Hono: Acta Mater. Vol. 49 (2001), p.389.

DOI: 10.1016/s1359-6454(00)00338-4

Google Scholar

[11] D. Raabe, F. Heringhaus, U. Hangen and G. Gottstein: Z. Metallk. Vol. 86, (1995), pp.405-415.

Google Scholar

[12] H.R. Sandim, M.J.R. Sandim, H.H. Bernardy, J.F.C. Lins, D. Raabe: Scripta Mater. Vol. 51, (2004) p.1099.

Google Scholar

[13] E.N. Popova, V.V. Popov, E.P. Romanov, N.E. Hlebova, A. Shikov: Scripta Mater. Vol. 51, (2004) p.727.

DOI: 10.1016/j.scriptamat.2004.05.037

Google Scholar

[14] E.N. Popova, V.V. Popov, E.P. Romanov, N.E. Hlebova, V.I. Pantsyrny and A.K. Shikov: Def. Diff. Forum Vol. 258-260 (2006), p.299.

DOI: 10.4028/www.scientific.net/ddf.258-260.299

Google Scholar

[15] L. Deng, X. Yang, K. Han, Y. Lu, M. Liang and Q. Liu: Mater. Character. Vol. 81 (2013), p.124.

Google Scholar

[16] V. Pantsyrny, A. Shikov, A. Vorobieva, N. Khlebova, N. Kozlenkova, I. Potapenko and M. Polikarpova: IEEE Trans. Appl. Supercond. Vol. 16, No. 2 (2006), p.1656.

DOI: 10.1109/tasc.2006.870554

Google Scholar

[17] A.R. Pelton, F.C. Labbs, W.A. Spitzig and C.C. Cheng: Ultramicroscopy Vol. 22 (1987)p.251.

Google Scholar

[18] D. Raabe, F. Heringhaus, U. Hangen and G. Gottstein: Z. Metallkd. Vol. 86, No. 6 (1995), p.405.

Google Scholar

[19] W.A. Spitzig: Acta Metal. Mater. Vol. 39, No. 6 (1991), p.1085.

Google Scholar

[20] E.N. Popova, V.V. Popov, L.A. Rodionova, S.V. Sudareva, E.P. Romanov et al.: Textures & Microstructures Vol. 34 (2000), p.263.

Google Scholar

[21] E.N. Popova, S.V. Sudareva, V.V. Popov, L.A. Rodionova, E.P. Romanov et al.: Phys. Met. Metallogr. Vol. 90, No. 2 (2000), p.199.

Google Scholar

[22] E.N. Popova, V.V. Popov, E.P. Romanov, L.A. Rodionova, S.V. Sudareva et al.: Phys. Met. Metallogr. Vol. 94, No. 1 (2002), p.73.

Google Scholar

[23] E.N. Popova, V.V. Popov, E.P. Romanov, S.V. Sudareva et al.: Scripta Mater. Vol. 46, (2002) p.193.

Google Scholar

[24] E.N. Popova, V.V. Popov, L.A. Rodionova, E.P. Romanov, S.V. Sudareva et al.: Deform. & Fracture of Mater. [in Russian] Vol. 2 (2005), 31.

Google Scholar

[25] E.N. Popova, V.V. Popov, E.P. Romanov, V.P. Pilyugin: Phys. Met. Metallogr. Vol. 101 (2006), p.52.

Google Scholar

[26] E.N. Popova, V.V. Popov, E.P. Romanov, V.P. Pilyugin: Phys. Met. Metallogr. Vol. 103 (2007), p.407.

Google Scholar

[27] V.V. Popov, E.N. Popova, A.V. Stolbovsky and V.P. Pilyugin: Materials Science Forum Vol. 667-669 (2011), p.409.

Google Scholar

[28] V.V. Popov, E.N. Popova, A.V. Stolbovskiy, V.P. Pilyugin: Mater. Sci. Eng. A Vol. 528 (2011), p.1491.

Google Scholar

[29] D.A. Hardwick, C.G. Rhodes and L.G. Fritzemeier: Met. Trans. Vol. 24A (1993), p.27.

Google Scholar

[30] J.D. Verhoeven, H.L. Downing, L.S. Chumbley et al.: J. Appl. Phys. Vol. 65 (1989), p.1293.

Google Scholar

[31] W.A. Spitzig, H.L. Downing, F.S. Laabs et al.: Met. Trans. Vol. 24A (1993), p.7.

Google Scholar