[1]
F. A. Hashim: Microstructural and bonding mechanisms of actively brazed advanced ceramic/ceramic systems. Unpublished doctoral dissertation, Production Engineering and Metallurgy Department, University of Technology, Baghdad, Iraq (2003)
Google Scholar
[2]
M. Singh, R. Asthana: Joining and integration of ZrB2-based ultra-high temperature ceramic composites using advanced brazing technology, Journal of Materials Science 45 (2010) 4308-4320
DOI: 10.1007/s10853-010-4510-8
Google Scholar
[3]
J. H. Xiong, J. H. Huang, Z.P. Wang, Y. H. Ban, H. Zhang, and X.K. Zhao: "Brazing of carbon fibre reinforced SiC composite and Ti alloy using Cu-Ti-C filler materials", Institute of Materials, Minerals, and Mining, School of Materials Science and Engineering, University of Science and Technology, Beijing, China (2010)
DOI: 10.1179/174328408x393440
Google Scholar
[4]
Y.Z. Liu, L.X. Zhang, C.B. Liiu, Z.W. Wang, H.W. Li, and J.C. Feng: "Brazing C/SiC composites with Nb and TiNiNb active filler metal", Institute of Materials, Minerals, and Mining, State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 15001, China. (2011) pp.193-198
DOI: 10.1179/1362171810y.0000000021
Google Scholar
[5]
K. Bobzin, N. Bagcivan, N. Kopp, C. Weiler: "Development of new brazing Filler s and Process Variants for Reactive Air Brazing (RAB) of Electromechanical Devices", ISBC 2012: Proceedings from the 5th International Brazing and Soldering Conference (ASM International) (2012)
Google Scholar
[6]
A. O. J. Al-Roubaiy: Properties and Mechanism of Ceramic (Al2O3)/ and metal (Cu) bonding. Unpublished doctoral dissertation, College of Engineering, University of Babylon, Babylon, Iraq (2007)
Google Scholar
[7]
J. G. Lee, Y.H. Choi, J.K. Lee, G.J. Lee, C.K. Rhee: Low-temperature brazing of titanium by the application of a Zr-Ti-Ni-Cu-Be- bulk metallic glass (BMG) alloy as a filler, Intermetallics 18 (2010) 70-73
DOI: 10.1016/j.intermet.2009.06.012
Google Scholar
[8]
J.L. Song, S.B. Lin, C.L. Yang, G.C. Ma, H. Liu: Spreading behavior and microstructure characteristics of dissimilar metals TIG welding-brazing of aluminum alloy to stainless steel, Materials Science and Engineering A 509 (2009) 31-40
DOI: 10.1016/j.msea.2009.02.036
Google Scholar
[9]
S. Chen, L. Li, Y. Chen, J. Huang: Joining mechanism of Ti/Al dissimilar alloys during laser welding-brazing process, Journal of Alloys and Compounds 509 (2011) 891-898
DOI: 10.1016/j.jallcom.2010.09.125
Google Scholar
[10]
S.Y. Chang, L.C. Tsao, Y.H. Lei, S.M. Mao, C.H. Huang: Brazing of 6061 aluminum alloy/Ti-6Al-4V using Al-Si-Cu-Ge filler metals, Journal of Materials Processing Technology 212 (2012) 8-14
DOI: 10.1016/j.jmatprotec.2011.07.014
Google Scholar
[11]
Y. Chen, S. Chen, L. Li: Influence of interfacial reaction layer morphologies on crack initiation and propagation in Ti/Al joint by laser welding-brazing, Materials and Design 31 (2010) 227-233
DOI: 10.1016/j.matdes.2009.06.029
Google Scholar
[12]
T. Kuzumaki, T. Ariga and Miyamoto: Effect of Additional Element in Ag-Cu Based Filler Metal on Brazing of Aluminum Nitride to Metals, ISIJ International 30 (1990) 1135-1141
DOI: 10.2355/isijinternational.30.1135
Google Scholar
[13]
S. Mandal, A. Ray: Correlation between the mechanical properties and microstructural behavior of Al2O3-(Ag-Cu-Ti) brazed joints, Material Science & Engineering A 383 (2004) 235-244.
DOI: 10.1016/j.msea.2004.06.002
Google Scholar