Analysis of Freeze-Drying and Rehydration of Açai (Euterpe oleracea Martius)

Article Preview

Abstract:

The freeze-drying rate is essentially low, since it is controlled by internal moisture diffusion. In addition, the application of vacuum and low temperature during the process presents a higher energy demand. Therefore, the search for new strategies to improve water mobility during freeze-drying constitutes a topic of relevant research. The aim of this work was to evaluate the use of power ultrasound to improve freeze-drying characteristics of açai, quantifying the influence of the applied power on both the drying and rehydration kinetics of the material. Açai (Euterpe oleracea Martius) samples were sonicated with two different frequency levels, 20 kHz and 40 kHz, and two sonication times, 3 min and 10 min. Page’s equation considering internal and external resistances to mass transfer provided a good fit of freeze-drying kinetics, while the Peleg’s equation was found to be suitable for describing the rehydration kinetics of freeze-dried açai. Pretreatment of açai with ultrasound waves was not effective. Ultrasound-induced structural disruption in the açai skin hindered the mass transfer during both freeze-drying and rehydration processes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-16

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.V. Tonon, C. Brabet and M.D. Hubinger: J. Food Eng. Vol. 88 (2008), p.411.

Google Scholar

[2] L.G. Marques, M.C. Ferreira and J.T. Freire: Chem. Eng. Process. Vol 46 (2007), p.451.

Google Scholar

[3] L.G. Marques and J.T. Freire: Dry. Technol., Vol. 23, (2005), p.2169.

Google Scholar

[4] C. Ozuna, J.A. Cárcel, J.V. García-Pérez, A. Mulet: J Sci Food Agric. Vol. 91 (2011), p.2511.

Google Scholar

[5] S. Fuente, E. Riera, V. Acosta, A. Blanco, J. Gallego-Juarez: Ultrasonics Vol. 44 (2006), p. e523.

DOI: 10.1016/j.ultras.2006.05.181

Google Scholar

[6] J.V. García-Pérez, J.A. Cárcel, S. De la Fuente and E. Riera: Ultrasonics Vol. 44, (2006), p. e539.

DOI: 10.1016/j.ultras.2006.06.059

Google Scholar

[7] J.A. Cárcel, J.V. García-Pérez, E. Riera and A. Mulet: Dry. Technol. Vol. 25 (2007), p.185.

Google Scholar

[8] J.V. García-Pérez, J.A. Cárcel, E. Riera. and A. Mulet: Dry. Technol. Vol. 27 (2009), p.281.

Google Scholar

[9] K. Schössler, H. Jäger and D. Knorr: J. Food Eng. Vol. 108 (2012) p.103.

Google Scholar

[10] A.R. Jambrak, T.J. Mason, L. Paniwnyk and V. Lelas: J. Food Eng. Vol 81 (2007), p.88.

Google Scholar

[11] L. Meda, C. Ratti: J. Food Proc. Eng., Vol. 28, (2005) p.233.

Google Scholar

[12] L.G. Marques, M.M. Prado and J.T. Freire: Food Sci. Technol. - LWT, Vol. 42 (2009), p.1232.

Google Scholar

[13] P. Garcia-Pascual, N. Sanjuan, R. Melis and A. Mulet: J. Food Eng., Vol. 72, (2006), p.346.

Google Scholar

[14] C. PAGE: M. Sc. Thesis, Purdue University, (1949).

Google Scholar

[15] M. Peleg: J. Food Sci., Vol. 53(4), (1988), p.1216.

Google Scholar

[16] W.K. Solomon: J. Food Proc. Eng., Vol. 30, (2007), p.119.

Google Scholar

[17] G. Giraldo, R. Vásques, M.E. Martín-Esparza, A. Chiralt: J. Food Eng., Vol. 77 (2006), p.825.

Google Scholar

[18] F.A.N. Fernandes, S. Rodrigues: J. Food Eng., Vol. 82, (2007), p.261.

Google Scholar

[19] R.K. Byler, C.R. Anderson, and R.C. Brook: T ASAE, Vol. 30, (1987), p.533.

Google Scholar

[20] U.S. Shivhare, A. Gupta, A.S. Bawa, and P. Gupta: Dry. Technol., Vol. 18, (2000), p.409.

Google Scholar

[21] D.L.S. Tan, K. Miyamoto, K. Ishibashi, K. Matsuda, T. Satow: T ASAE, Vol. 44 (2001), p.669.

Google Scholar

[22] C. Ratti: J. Food Eng., Vol. 49, (2001), p.311.

Google Scholar

[23] L.G. Marques, A.M. Silveira and J.T. Freire: Dry. Technol., Vol. 24, (2006), p.457.

Google Scholar