First-Principles Study of Hydrogen Storage in Fe-Ti System

Article Preview

Abstract:

In this study, a first-principles investigation of hydrogen storage in the FeTi intermetallic is carried out. The structural and electronic changes due to hydrogen insertion into the FeTi intermetallic are determined using DFT and pseudo-potential calculations through the code SIESTA (Spanish Initiative for Electronic Simulation of Thousand of Atoms). The pseudopotentials are constructed using Troullier and Martins parametrization which describes correctly the ion-electron interactions. To define the real-space grid, necessary for numerical calculations of the electron density, detailed tests were performed in order to choose the appropriate basis set, the energy cutoff and the k-grid cutoff. The exchange-correlation potential is treated with the generalized gradient approximation (GGA). Lattice data, bonding properties and the density of states provide an explanation for the role played by hydrogen in the chemical bond with the Ti and Fe constituents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

266-271

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Shao, G. Xin, J. Zheng, X. Li and E. Akiba: Rev. Nano Energy 1 (2012), p.590.

Google Scholar

[2] K. D. Ciric, A. Kocjan, et al.: Int. J of Hydrogen Energy 37 (2012), p.8408.

Google Scholar

[3] G. H. Lee, Y. J. Jin, J. I. Lee and S. C. Hong: Journal of Magnetics 10 (2005), p.1.

Google Scholar

[4] J. A. Munoz Jr, in: Electronic structure and phonon thermodynamics of iron alloys. PhD thesis (2013).

Google Scholar

[5] J.J. Reilly and A.H. Wiswall: Inorganic Chemistry 7 (1968), p.2254.

Google Scholar

[6] L. -F. Zhu, M. Friák, A. Udyansky, D. Ma, A. Schlieter, U. Kühn, J. Eckert, J. Neugebauer: Intermetallics 45 (2014), p.11.

DOI: 10.1016/j.intermet.2013.09.008

Google Scholar

[7] N. Acharya, B. Fatima, S. S. Chouhan and S. P. Sanyal: Chemistry and Materials Research Vol. 3 No. 8 (2013), p.22.

Google Scholar

[8] Y. Fukai Y, in: The metal-hydrogen system (Springer-Verlag 1993).

Google Scholar

[9] N. Endo, H. Saitoh, and al.: Int. J of Hydrogen Energy. 38 (2013), p.6726.

Google Scholar

[10] J.M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P. Ordejón and D. Sánchez-Portal: J. Phys.: Condens. Matter 14 (2002), p.2745.

DOI: 10.1088/0953-8984/14/11/302

Google Scholar

[11] E. Artacho, E. Anglada, et al.: J. Phys.: Condens. Matter 20 (2008), p.064208.

Google Scholar

[12] J.P. Perdew, K. Burke, M. Ernzerhof: Phys. Rev. Lett. 77 (1996), p.3865.

Google Scholar

[13] N. Troullier and J.L. Martins: Phys. Rev. B. 43 (1996), p. (1993).

Google Scholar

[14] F. Birch, J. Appl. Phys. 9 (1938), p.275.

Google Scholar

[15] F. D. Murnaghan: Proc Natl Acad Sci USA 30 (1944), p.244.

Google Scholar

[16] F. Cardarelli, in: Materials Handbook, Ferrous metals and their alloys, chapter 2, (Springer-Verlag, London, 2nd edition 2008).

Google Scholar

[17] M. Samah and B. Moula: Revista Mexicana De Fìsica 57 (2011), p.166.

Google Scholar

[18] S. Alnemrat, J. P. Hooper, I. Vasiliev and B. Kiefer: J. Phys.: Condens. Matter 26 (2014), p.1.

Google Scholar

[19] A. Schlieter, U. Kühn, J. Eckert, W. Löser, T. Gemming, M. Friák: Intermetallics 19 (2011) p.327.

DOI: 10.1016/j.intermet.2010.10.012

Google Scholar

[20] I. P. Chernov, Yu. M. Koroteev, O. V. Gimranova, and Yu. I. Tyurin: Journal of Surface Investigation. X-ray, Synchrotron and Neutron TechniquesVol. 1, No. 2 (2007), p.186.

Google Scholar

[21] A.A. Mubarak, B.A. Hamad, J.M. Khalife: Journal of Magnetism and Magnetic Materials 323 (2011), p.383.

Google Scholar

[22] F. Bozso, G. Ertl, M. Grunze, M. Weiss: Appl. Surf. Sci. 1 (1977), p.103.

Google Scholar

[23] J.S. Kim, S.Y. Oha, G. Leea, Y.M. Kooa, S.E. Kulkovab, c, V.E. Egorushkin: International Journal of Hydrogen Energy 29 (2004), p.87.

Google Scholar

[24] A. Kinaci and M.K. Aydinol: Int. J of Hydrogen Energy. 32 (2007), p.2466.

Google Scholar