Towards a Study of Effects on Hydrogen Diffusion into T40 Titanium Alloys

Article Preview

Abstract:

In a global study of titanium alloys behavior in specific aqueous solution (embrittlement, corrosion and corrosion under stresses), the present work focuses on hydrogen diffusion into the metal and the consequences on its microstructure. Two ways of hydrogen charging were used to investigate this issue (gaseous and cathodic charging). The final aim is to determine a fitted method to create an identified microstructure and then to perform accelerated aging tests of titanium U-Bend samples into an autoclave with a specific environment. Hydrogen absorption and formation of titanium hydride have been studied by SEM analyses and by X-ray diffraction methods.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

272-277

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Haag R.M., Shipko F.J.: The titanium - hydrogen system. J. Amer. Chem. Soc. 78 (1965), pp.5156-5159.

Google Scholar

[2] Philips I.I., Poole P., Shreir L.L.: Hydride formation during cathodic polarization of Ti – I. Effect of current density on kinetics of growth and composition of hydride. Corrosion Sci. 12 (1972), pp.855-866.

DOI: 10.1016/s0010-938x(72)80014-3

Google Scholar

[3] Borchers C.H., Leonov A.V., Khomrnko T.I., Morozova O.S.: Mechanism and kinetics of mechanically induced transformation of Ti and titanium hydride: Effect of reaction medium on microstructure, morphology and hydrogen-uptake properties. J. Materials Sciences 39 (2004).

DOI: 10.1023/b:jmsc.0000039223.05607.76

Google Scholar

[4] Schur D.V., Zaginajchenko S.Y., Adejev V.M., Voitovich V.B., Lyashenkov A.A., Trefilov V.I.: Phase transformation in titanium hydrides. Int. J. Hydrogen Energy 21 (1996), pp.1121-1124.

Google Scholar

[5] Irving P.E., Beevers C.J.: Some metallographic and lattice parameter observations on titanium hydride. Metalurg. Trans. 2 (1971), pp.613-615.

DOI: 10.1007/bf02663362

Google Scholar

[6] Trefilov V.I., Timofeeva I.I., Klochkov L.I., Morozov I.A., Morozova R.A.: Effects of temperature change and hydrogen content on titanium hydride crystal lattice volume. Int. J. Hydrogen Energy 21 (1996), pp.1101-1103.

DOI: 10.1016/s0360-3199(96)00078-x

Google Scholar

[7] Toshio Ogawa, Ken'ichi Yokoyama, Kenzo Asaoka, Jun'ichi Sakai: Distribution and thermal desorption behavior of hydrogen in titanium alloys immersed in acidic fluoride solutions. J. Alloys and Compounds 396 (2005), pp.269-274.

DOI: 10.1016/j.jallcom.2004.12.041

Google Scholar

[8] Tal-Gutelmacher E., Eliezer D. : High fugacity hydrogen effects at room temperature in titanium based alloys. J. Alloys and Compounds 404-406 (2005), pp.613-616.

DOI: 10.1016/j.jallcom.2004.12.172

Google Scholar

[9] Creton N., Dejardin S., Grysakowski B., Optasanu V., Montésin T. : A mechano-chemical coupling for hydrogen diffusion in metals based on a thermodynamic approach. Defect and Difusion Forum, Vol. 353, (2014).

DOI: 10.4028/www.scientific.net/ddf.353.286

Google Scholar

[10] Lunarska ., Chernyayeva O., Lisovytski D. : Hydride formation at cathodic charging of a-Ti , Advances in materials science, Vol. 8, No 1(15), 2008, pp.105-114.

Google Scholar

[11] Senkov O.N., Dubois M., Jonas I.J.: Elastic moduli of titanium-hydrogen alloys in the temperature range 200 C to 11000 C. Met. And Mater. Trans. A29 (1996), pp.3963-3970.

DOI: 10.1007/bf02595645

Google Scholar

[12] Daigo Setayama, Junji Matsumaga, Hiroaki Muta, Masayohi Uno, Shinsuke Yamanaka : Mechanical properties of titanium hydride, Intern. J. Alloys and Compounds, 381 (2004) pp.215-220.

DOI: 10.1016/j.jallcom.2004.04.073

Google Scholar