Wheat Convective Drying: An Analytical Investigation via Galerkin-Based Integral Method

Article Preview

Abstract:

This work aims to study convective drying of ellipsoidal solids. Aplication has been done to drying of wheat Kernel. Diffusion equation in cylindrical coordinates has been solved via Galerkin-based integral method considering convective boundary conditions and constant thermo-physical properties. Results of the temperature and moisture content are presented and compared with wheat experimental drying data at relative humidity 33.8 % and temperature 47.0°C. It was verified that heat transfer in the drying process occurs much faster than the mass transfer, thus providing a rapid heating of the product, which reduces grain quality.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

82-87

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. P. Silva, Convective Drying Solids with Complex Shape Using the Galerkin-Based Integral Method, (Master`s Thesis. Federal University of Campina Grande, Brazil, 2013). (In Portuguese).

Google Scholar

[2] M. Özbey, M.S. Söyleme, Energ. Conv. and Manage., 46, 1495-1512 (2005).

Google Scholar

[3] D. B. Brooker; F. W. Bakker-Arkema and C. W. Hall (AVI, New York, USA 1992).

Google Scholar

[4] S. Chemkhi; F. Zagrouba, Desalination. Vol. 185 (2005), pp.491-498.

Google Scholar

[5] N. Ukrainczyk, Int. J. Heat and Mass Transf. Vol. 52 (2009), pp.5675-5681.

Google Scholar

[6] J. E. F. Carmo; A. G. B. Lima, Drying Tech. Vol. 23 (2005), p.1977-(1992).

Google Scholar

[7] O. Hacihafizoğlu; A. Cihana; K. Kahveci; A. G. B. Lima, Eur. Food Res. and Tech., Vol. 226 (2008), pp.787-793.

Google Scholar

[8] J. E. F. Carmo; A. G. B. Lima, Braz. J. Chem. Eng. Vol. 25(2008), pp.19-26.

Google Scholar

[9] F. R. Payne, C.C. Corduneanu, A. Haji-Sheikh, T. Huang. Integral methods in science and engineering. Chapter: On solution of parabolic partial differential equations using Galerkin functions. Hemisphere Publishing Corporation, New York, USA, (1986).

Google Scholar

[10] D. R. Lima, S. N. Farias, A. G. B. Lima, Braz. J. Chem. Eng. Vol. 21 (2004), p.667.

Google Scholar

[11] L.V. Kantorovich, and V. I. Krylov. Approximate methods of higher analysis. Advanced Calculus, Wiley, New York, USA, (1960).

Google Scholar

[12] J.V. Beck, K. D. Cole, A. Haji-Sheikh. and B. Litkouhi. Heat condution using Green's functions. Hemispheric Publishing Corporation, New York, USA, Galerkin-based Green's functions and solutions. (1992), p.293.

DOI: 10.1201/9781439895214

Google Scholar

[13] A. G. B. Lima. Diffusion phenomena in solid prolate spheroid. Case Study: Banana drying". Doctorate Thesis. Stadie University of Campinas, SP. (1999).

Google Scholar

[14] M. Fortes, M.R. Okos and J. R. Barrett J. R. J. Agric. Eng. Res. Vol. 26 (1981), p.109.

Google Scholar