[1]
J. P. Silva, Convective Drying Solids with Complex Shape Using the Galerkin-Based Integral Method, (Master`s Thesis. Federal University of Campina Grande, Brazil, 2013). (In Portuguese).
Google Scholar
[2]
M. Özbey, M.S. Söyleme, Energ. Conv. and Manage., 46, 1495-1512 (2005).
Google Scholar
[3]
D. B. Brooker; F. W. Bakker-Arkema and C. W. Hall (AVI, New York, USA 1992).
Google Scholar
[4]
S. Chemkhi; F. Zagrouba, Desalination. Vol. 185 (2005), pp.491-498.
Google Scholar
[5]
N. Ukrainczyk, Int. J. Heat and Mass Transf. Vol. 52 (2009), pp.5675-5681.
Google Scholar
[6]
J. E. F. Carmo; A. G. B. Lima, Drying Tech. Vol. 23 (2005), p.1977-(1992).
Google Scholar
[7]
O. Hacihafizoğlu; A. Cihana; K. Kahveci; A. G. B. Lima, Eur. Food Res. and Tech., Vol. 226 (2008), pp.787-793.
Google Scholar
[8]
J. E. F. Carmo; A. G. B. Lima, Braz. J. Chem. Eng. Vol. 25(2008), pp.19-26.
Google Scholar
[9]
F. R. Payne, C.C. Corduneanu, A. Haji-Sheikh, T. Huang. Integral methods in science and engineering. Chapter: On solution of parabolic partial differential equations using Galerkin functions. Hemisphere Publishing Corporation, New York, USA, (1986).
Google Scholar
[10]
D. R. Lima, S. N. Farias, A. G. B. Lima, Braz. J. Chem. Eng. Vol. 21 (2004), p.667.
Google Scholar
[11]
L.V. Kantorovich, and V. I. Krylov. Approximate methods of higher analysis. Advanced Calculus, Wiley, New York, USA, (1960).
Google Scholar
[12]
J.V. Beck, K. D. Cole, A. Haji-Sheikh. and B. Litkouhi. Heat condution using Green's functions. Hemispheric Publishing Corporation, New York, USA, Galerkin-based Green's functions and solutions. (1992), p.293.
DOI: 10.1201/9781439895214
Google Scholar
[13]
A. G. B. Lima. Diffusion phenomena in solid prolate spheroid. Case Study: Banana drying". Doctorate Thesis. Stadie University of Campinas, SP. (1999).
Google Scholar
[14]
M. Fortes, M.R. Okos and J. R. Barrett J. R. J. Agric. Eng. Res. Vol. 26 (1981), p.109.
Google Scholar