Optimization of a Sensible Thermal Storage System by a Lumped Approach

Article Preview

Abstract:

This study is focused on the optimization of a sensible thermal storage system subjected to a cyclic energy source. The objective is to minimize the system heat storage mass and its geometry to guarantee its operation within an admissible temperature range. The storage medium is modeled as a Lumped system and the working fluid by a non-capacitive energy balance. The storage medium is composed of an array of parallel flat plates submitted to an air stream. The optimization is based on an exhaustive search method. It is observed that the minimum heat storage mass is proportional to the mass airflow rate. An optimal relationship between the superficial heat transfer rate and the fluid flow inertia, given by the dimensionless parameter NTU, is found to be constant (4.03) and independent in respect to the mass flow rate. The system time constant was invariable (3,230 s) for the optimal relationship between the interface heat transfer rate and the system inertia.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

182-191

Citation:

Online since:

April 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. HASNAIN: Review on sustainable thermal energy storage technologies. part i: heat storage materials and techniques (Energy conversion and management. V. 39. n. 11. pp.1127-1138. 1998).

DOI: 10.1016/s0196-8904(98)00025-9

Google Scholar

[2] L. BAL, S. SATYA, S. NAIK: Solar dryer with thermal energy storage systems for drying agricultural food products: a review (Renewable & sustainable energy reviews. V. 14. n. 8. pp.2298-2314. 2010).

DOI: 10.1016/j.rser.2010.04.014

Google Scholar

[3] L. CABEZA, A. CASTELL, C. BARRENECHE, A. GRACIA, A. I. FERNÁNDEZ: Materials used as PCM in thermal energy storage in buildings: a review (Renewable & sustainable energy reviews. V. 15. n. 3. pp.1675-1695. 2011).

DOI: 10.1016/j.rser.2010.11.018

Google Scholar

[4] P. CHAUHAN, C. CHOUDHURY, H. GARG: Comparative performance of coriander dryer coupled to solar air heater and solar air-heater-cum-rockbed storage (Applied thermal engineering. V. 16. n. 6. pp.475-486. 1996).

DOI: 10.1016/1359-4311(95)00038-0

Google Scholar

[5] D. SRAGOVICH: Transient analysis for designing and predicting operational performance of a high-temperature sensible thermal-energy storage-system (Solar energy. V. 43. n. 1. pp.7-16. 1989).

DOI: 10.1016/0038-092x(89)90095-9

Google Scholar

[6] V. SALOMONI, C. MAJORANA, G. GIANNUZZI, A. MILIOZZI, R. MAGGIO, F. GIRARDI, D. MELE, M. LUCENTINI: Thermal storage of sensible heat using concrete modules in solar power plants (Solar energy. V. 103. pp.303-315. 2014).

DOI: 10.1016/j.solener.2014.02.022

Google Scholar

[7] T. H. Andriotty, L. J. Rodrigues, L. A. O. Rocha, P. S. Schneider: Lumped methodology applied to sensible thermal storage systems (2015).

Google Scholar

[8] Y. A. ÇENGEL: Heat Transfer: A Practical Approach. 2nd ed. McGraw-Hill (2002).

Google Scholar

[9] J. A. DUFFIE, W. A. BECKMAN: Solar Engineering of Thermal Processes. New York. John Wiley & Sons. INC. 4th edition (2013).

Google Scholar

[10] K. STEPHAN: Wärmeübergang und Druckabfall bei nicht ausgebildeter Laminarströmung in Röhren und ebenen Spalten (Chen. Int. Tech. Vol. 31. 1959. pp.773-778).

DOI: 10.1002/cite.330311204

Google Scholar

[11] A. BEJAN: Convection Heat Transfer. New Jersey. John Wiley & Sons. INC (2004).

Google Scholar

[12] F. P. INCROPERA, D. P. DEWITT: Fundamentals of Heat and Mass Transfer. 7th ed. New Jersey. John Wiley & Sons. INC (2011).

Google Scholar