[1]
J. Riccius, O. Haidn, and E. Zametaev. Influence of time dependent effects on the estimated life time of liquid rocket combustion chamber walls. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA 2004-3672, (2004).
DOI: 10.2514/6.2004-3670
Google Scholar
[2]
R. J. Quentmeyer. Experimental fatigue life investigation of cylindrical thrust chambers. AIAA/SAE 13th Propulsion Conference, AIAA 77-893, (1977).
DOI: 10.2514/6.1977-893
Google Scholar
[3]
W.E. Anderson, J.C. Sisco, and I.K. Sung. Rocket combustor experiments and analyses. 14th Annual Thermal & Fluids Analysis Workshop (TFAWS), (2003).
Google Scholar
[4]
V.K. Arya and S.M. Arnold. Viscoplastic analysis of an experimental cylindrical thrust chamber liner. Technical report, NASA, (1991).
Google Scholar
[5]
D.T. Butler Jr, J. Aboudi, and M. -J. Pindera. Role of the material constitutive model in simulating the reusable launch vehicle thrust cell liner response. Journal of Aerospace Engineering, 18(1): 28-41, (2005).
DOI: 10.1061/(asce)0893-1321(2005)18:1(28)
Google Scholar
[6]
J.R. Riccius, M.R. Hilsenbeck, and O.J. Haidn. Optimization of geometric parameters of cryogenic liquid rocket combustion chambers. 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2001-3408, (2001).
DOI: 10.2514/6.2001-3408
Google Scholar
[7]
J.R. Riccius, O.J. Haidn, and E.B. Zametaev. Influence of time dependent effects on the estimated life time of liquid rocket combustion chamber walls. 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2004-3672, (2004).
DOI: 10.2514/6.2004-3670
Google Scholar
[8]
Jundika C. Kurnia, Agus P. Sasmito, and Arun S. Mujumdar. Numerical investigation of laminar heat transfer performance of various cooling channel designs. Applied Thermal Engineering, 31(6-7): 1293-1304, (2011).
DOI: 10.1016/j.applthermaleng.2010.12.036
Google Scholar
[9]
Tetsuya Yoshiara, Daisuke Sasaki, and Kazuhiro Nakahashi. Conjugate heat transfer simulation of cooled turbine blades using unstructured-mesh cfd solver. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2011-498, (2011).
DOI: 10.2514/6.2011-498
Google Scholar
[10]
H. Negishi, Y. Daimon, H. Kawashima, and N. Yamanishi. Flowfield and heat transfer characteristics of cooling channel flows in a subscale thrust chamber. 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, AIAA 2011-5844, (2011).
DOI: 10.2514/6.2011-5844
Google Scholar
[11]
P. Birken, K. J. Quint, S. Hartmann, and A. Meister. A time-adaptive fluid-structure interaction method for thermal coupling. Comput Visual Sci, 10: 1-10, (2011).
DOI: 10.1007/s00791-010-0150-4
Google Scholar
[12]
M. Grilli, S. Hickel, N.A. Adams, G. Hammerl, C. Danowski, and A.W. Wall. An innovative approach to thermo-fluid-structure interaction based on an immersed interface method and a monolithic thermo-structure interaction algorithm. 42nd AIAA Fluid Dynamics Conference and Exhibit, AIAA 2012-3267, (2012).
DOI: 10.2514/6.2012-3267
Google Scholar
[13]
C. Farhat. Real-time CFD-based flutter analysis of complex aircraft configurations on a mobile device. International Forum on Aeroelasticity and Structural Dynamics (IFASD), Keynote Lecture, Paris, (2011).
Google Scholar
[14]
M. Y. M. Ahmed and N. Qin. Surrogate-based aerodynamic design optimization: Use of surrogates in aerodynamic design optimization. 13th International Conference on Aerospace Sciences & Aviation Technology, 26-28 May 2009, Cairo, Egypt, ASAT-13-AE-14, (2009).
DOI: 10.21608/asat.2009.23442
Google Scholar
[15]
K. Willcox and J. Peraire. Balanced model reduction via the proper orthogonal decomposition. AIAA Journal, 2323-2330, (2002).
DOI: 10.2514/3.15326
Google Scholar
[16]
D. Amsallem and C. Farhat. An interpolation method for adapting reduced-order models and application to aeroelasticity. AIAA Journal, 46: 1803-1813, (2008).
DOI: 10.2514/1.35374
Google Scholar
[17]
D. Amsallem, J. Cortial, K. Carlberg, and C. Farhat. A method for interpolating on manifolds structural dynamics reduced-order models. International Journal for Numerical Methods in Engineering, 80(9): 1241-1258, (2009).
DOI: 10.1002/nme.2681
Google Scholar
[18]
Y. Wang, H. Song, and K. Pant. A reduced order model for whole-chip thermal analysis of microfluidic lab-on-a-chip systems. Microfluid Nanofluidics, 16(1-2): 369-380, (2014).
DOI: 10.1007/s10404-013-1210-0
Google Scholar
[19]
C. Fagley, J. Seidel, S. Siegel, and T. McLaughlin. Reduced order modeling using proper orthogonal decomposition (pod) and wavenet system identification of a free shear layer. In Rudibert King, editor, Active Flow Control II, volume 108 of Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 325-339, Springer Berlin / Heidelberg, (2010).
DOI: 10.1007/978-3-642-11735-0_21
Google Scholar
[20]
W. i Zhang, B. Wang, Z. Ye, and J. Quan. Efficient method for limit cycle flutter analysis based on nonlinear aerodynamic reduced-order models. AIAA Journal, 50(5): 1019-1028, May (2012).
DOI: 10.2514/1.j050581
Google Scholar
[21]
A. J. Culler, A. R. Crowell, and J. J. McNamara. Studies on fluid-structural coupling for aerothermoelasticity in hypersonic flow. 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 4-7 May 2009, Palm Springs, California, AIAA 2009-2364, (2009).
DOI: 10.2514/6.2009-2364
Google Scholar
[22]
J. J. McNamara, A. J. Culler, and A. R. Crowell. Aerothermoelastic modeling considerations for hypersonic vehicles. 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, (2009).
DOI: 10.2514/6.2009-7397
Google Scholar
[23]
A. R. Crowell, J. J. McNamara, K. M. Kecskemety, and T. W. Goerig. A reduced order aerothermodynamic modeling framework for hypersonic aerothermoelasticity. 51st AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 12- 15 April 2010, Orlando, Florida, AIAA 2010-2969, (2010).
DOI: 10.2514/6.2010-2969
Google Scholar
[24]
A. R. Crowell, J. J. McNamara, and B. A. Miller. Surrogate based reduced-order aerothermodynamic modeling for structural response prediction at high mach numbers. 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 4-7 April 2011, Denver, Colorado, AIAA 2011-2014, (2011).
DOI: 10.2514/6.2011-2014
Google Scholar
[25]
K. Lindhorst, M. C. Haupt, and P. Horst. Efficient surrogate modelling of nonlinear aerodynamics in aerostructural coupling schemes. AIAA Journal, 52(9): 1952-1966, June (2014).
DOI: 10.2514/1.j052725
Google Scholar
[26]
D.S. C Kowollik, P. Horst, and M.C. Haupt. Fluid-structure interaction analysis applied to thermal barrier coated cooled rocket thrust chambers with subsequent local investigation of delamination phenomena. EUCASS book series, Advances in Aerospace Sciences, Progress in Propulsion Physics, 4, (2012).
DOI: 10.1051/eucass/201304617
Google Scholar
[27]
M. Haupt, R. Niesner, R. Unger, and P. Horst. Computational aero-structural coupling for hypersonic applications. 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA 2006-3252, (2006).
DOI: 10.2514/6.2006-3252
Google Scholar
[28]
M. Haupt, R. Niesner, D. Kowollik, B. Esser, and P. Horst. Model configuration for the validation of aerothermodynamic thermal-mechanical fluid-structure-interactions. ASME 2012, 11th Biennial Conference On Engineering Systems Design and Analysis, (2012).
DOI: 10.1115/esda2012-82908
Google Scholar
[29]
Thomas Gerhold. Overview of the hybrid RANS code TAU. In MEGAFLOW-Numerical Flow Simulation for Aircraft Design, 81-92. Springer, (2005).
DOI: 10.1007/3-540-32382-1_5
Google Scholar
[30]
D. J. Lucia, P. S. Beran, and W. Silva. Aeroelastic system development using proper orthogonal decomposition and volterra theory. 44th AIAA Structures, Structural Dynamics and Materials Conference, AIAA 2003-1922, 7-10 April (2003).
DOI: 10.2514/6.2003-1922
Google Scholar
[31]
M. Meyer and H. G. Matthies. Efficient model reduction in non-linear dynamics using the Karhunen-Loève expansion and dual-weighted-residual methods. Computational Mechanics, 31, No. 1-2: 179-191, 2003. 10. 1007/s00466-002-0404-1.
DOI: 10.1007/s00466-002-0404-1
Google Scholar
[32]
S. Willems, A. Gülhan, and B. Esser. Thermal fluid structure interaction. Sonderforschungsbereich/Transregio 40, Annual Report 2012, 277-286, (2012).
Google Scholar
[33]
F.J. Arendts, A. Theuer, K. Maile, J. Kuhnle, G. Neuer, and R. Brandt. Thermomechanical and thermophysical properties of liquid siliconized c/c-sic. Zeitschrift für Flugwissenschaften und Weltraumforschung, 19(3): 189-196, (1995).
Google Scholar
[34]
M. Fassin, D. Kowollik, S. Reese, and M. Haupt. Design studies of rocket engine cooling structures for fatigue experiments. submitted to Archive of Applied Mechanics, Springer-Verlag Berlin Heidelberg, in (2015).
DOI: 10.1007/s00419-016-1160-6
Google Scholar
[35]
D.S.C. Kowollik, M.C. Haupt, and P. Horst. Three domain thermal and mechanical fluidstructure interaction analysis applied to cooled rocket thrust chambers. In Proceedings of the ECCOMAS Coupled Problems Conference, Kos Island, Greece, (2011).
DOI: 10.1051/eucass/201304617
Google Scholar
[36]
J.J. Esposito and R.F. Zabora. Thrust chamber life prediction, volume i: Mechanical and physical properties of high performance rocket nozzle materials. Technical report, NASA Report, NASA CR-134806, (1975).
Google Scholar
[37]
D. Kowollik, V. Tini, S. Reese, and M. Haupt. 3d fluid-structure interaction analysis of a typical liquid rocket engine cycle based on a novel viscoplastic damage model. International Journal for Numerical Methods in Engineering, 94(13): 1165-1190, (2013).
DOI: 10.1002/nme.4488
Google Scholar