Influence of Deposition Parameters on the Properties of Nanocomposite Coatings Prepared by Cathodic Arc Evaporation

Article Preview

Abstract:

The article deals with the influence of different deposition parameters on the selected properties of AlCrN/Si3N4 nanocomposite coatings. Bias voltage, cathodes currents and working gas pressure were changed during the deposition process. All coatings were deposited using Lateral Rotating Cathodes (LARC®) process that belongs to the group of cathodic arc evaporation PVD technologies. In comparison with the typical cathodic arc evaporation process which usually uses planar targets the LARC® process utilizes rotational cathodes that are positioned close to each other. Nanohardness, Young's modulus, thickness and residual stresses were determinated in order to evaluate the influence of deposition parameters on these coatings properties

You might also be interested in these eBooks

Info:

Periodical:

Pages:

77-81

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] F. Sanchette, C. Ducros, T. Schmitt, P. Steyer, and A. Billard, Nanostructured hard coatings deposited by cathodic arc deposition: From concepts to applications, Surf. Coat. Technol., vol. 205, no. 23–24, p.5444–5453, Sep. (2011).

DOI: 10.1016/j.surfcoat.2011.06.015

Google Scholar

[2] J. Musil, Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness, Surf. Coat. Technol., vol. 207, p.50–65, Aug. (2012).

DOI: 10.1016/j.surfcoat.2012.05.073

Google Scholar

[3] X. Ding, X. T. Zeng, and Y. C. Liu, Structure and properties of CrAlSiN Nanocomposite coatings deposited by lateral rotating cathod arc, Thin Solid Films, vol. 519, no. 6, p.1894–1900, Jan. (2011).

DOI: 10.1016/j.tsf.2010.10.022

Google Scholar

[4] S. Veprek and M. J. G. Veprek-Heijman, Industrial applications of superhard nanocomposite coatings, Surf. Coat. Technol., vol. 202, no. 21, p.5063–5073, Jul. (2008).

DOI: 10.1016/j.surfcoat.2008.05.038

Google Scholar

[5] S. Veprek, M. G. J. Veprek-Heijman, P. Karvankova, and J. Prochazka, Different approaches to superhard coatings and nanocomposites, Thin Solid Films, vol. 476, no. 1, p.1–29, Apr. (2005).

DOI: 10.1016/j.tsf.2004.10.053

Google Scholar

[6] E. Uhlmann, J. A. Oyanedel Fuentes, R. Gerstenberger, and H. Frank, nc-AlTiN/a-Si3N4 and nc-AlCrN/a-Si3N4 nanocomposite coatings as protection layer for PCBN tools in hard machining, Surf. Coat. Technol., vol. 237, p.142–148, Dec. (2013).

DOI: 10.1016/j.surfcoat.2013.09.017

Google Scholar

[7] J. L. Endrino, S. Palacín, M. H. Aguirre, A. Gutiérrez, and F. Schäfers, Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films, Acta Mater., vol. 55, no. 6, p.2129–2135, Apr. (2007).

DOI: 10.1016/j.actamat.2006.11.014

Google Scholar

[8] T. Polcar, T. Vitu, J. Sondor, and A. Cavaleiro, Tribological Performance of CrAlSiN Coatings at High Temperatures, Plasma Process. Polym., vol. 6, no. S1, pp. S935–S940, Jun. (2009).

DOI: 10.1002/ppap.200932307

Google Scholar

[9] J. Soldán, J. Neidhardt, B. Sartory, R. Kaindl, R. Čerstvý, P. H. Mayrhofer, R. Tessadri, P. Polcik, M. Lechthaler, and C. Mitterer, Structure–property relations of arc-evaporated Al–Cr–Si–N coatings, Surf. Coat. Technol., vol. 202, no. 15, p.3555–3562, Apr. (2008).

DOI: 10.1016/j.surfcoat.2007.12.041

Google Scholar

[10] S. K. Kim, V. V. Le, P. V. Vinh, and J. W. Lee, Effect of cathode arc current and bias voltage on the mechanical properties of CrAlSiN thin films, Surf. Coat. Technol., vol. 202, no. 22–23, p.5400–5404, Aug. (2008).

DOI: 10.1016/j.surfcoat.2008.06.019

Google Scholar

[11] J. Musil, Hard and superhard nanocomposite coatings, Surf. Coat. Technol., vol. 125, no. 1, p.322–330, (2000).

Google Scholar

[12] T. Polcar and A. Cavaleiro, High-temperature tribological properties of CrAlN, CrAlSiN and AlCrSiN coatings, Surf. Coat. Technol., vol. 206, no. 6, p.1244–1251, Dec. (2011).

DOI: 10.1016/j.surfcoat.2011.08.037

Google Scholar

[13] D. B. Lee, T. D. Nguyen, and S. K. Kim, Air-oxidation of nano-multilayered CrAlSiN thin films between 800 and 1000 °C, Surf. Coat. Technol., vol. 203, no. 9, p.1199–1204, Jan. (2009).

DOI: 10.1016/j.surfcoat.2008.10.011

Google Scholar

[14] T. Polcar and A. Cavaleiro, High temperature properties of CrAlN, CrAlSiN and AlCrSiN coatings – Structure and oxidation, Mater. Chem. Phys., vol. 129, no. 1–2, p.195–201, Sep. (2011).

DOI: 10.1016/j.matchemphys.2011.03.078

Google Scholar

[15] Breaking News., [Online]. Available: http: /platit. com/breaking-news. [Accessed: 12-Jun-2014].

Google Scholar