An Analytical Framework for the Study of Solid Body Cooling

Article Preview

Abstract:

This paper aims to study the cooling of a solid body. An analytical analysis of a solid body cooling in different regimes is presented, such as a simple first order exponential model, a modified exponential model, a generalized exponential model and the so-called regular temperature regime. The analysis also includes the influence of the dynamically changing relaxation time and we also present the solution of the nonlinear heat equation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-18

Citation:

Online since:

January 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Koštial, I. Ružiak., Z. Jonšta, I. Kopal, R. Hrehuš, J. Kršková, Experimental method for complex thermo-mechanical material analysis, Int. J. Thermophysics, 31 (2010), 630-636.

DOI: 10.1007/s10765-010-0745-5

Google Scholar

[2] I. Kopal, P. Koštial, P. Investigation of thermal parameters of materials I, VŠB-TU, Ostrava, (2010).

Google Scholar

[3] S. Malinarič, P. Dieška, P. Krupa, Modified dynamic plane source method for measuring thermophysical parameters of solids, Int. J. Thermophysics, 33 (2012), 528-539.

DOI: 10.1007/s10765-012-1173-5

Google Scholar

[4] U. Besson, The History of the Cooling Law: When the Search for Simplicity can be an Obstacle, Sci. Educ-Netherlands, 21 (2012),   1085–1110.

DOI: 10.1007/s11191-010-9324-1

Google Scholar

[5] K. C. Cheng, Some observations on the origins of Newton's law of cooling and its influences on Thermofluid Science, Appl. Mech. Rev., 62 (2009), 060803.

Google Scholar

[6] M. Vollmer, Newton's law of cooling revisited, Eur. J. Phys, 30 (2009), 1063.

Google Scholar

[7] A. Tröster, W. Schranz, General theory of heat diffusion dynamics, Phys. Rev. B, 66 (2002), 1841.

Google Scholar

[8] X. Maldague, Theory and Practice of Infrared Technology for Non Destructive Testing, Wiley, New York, (2001).

Google Scholar

[9] J. H. Lienhard, A heat transfer textbook, 4th ed. Mineola, N. Y, Courier Dover Publications, (2013).

Google Scholar

[10] M. Matejides, Applied mathematics (in Slovak), Matcentrum, Zvolen.

Google Scholar

[11] M. C. Wendl, Fundamentals of Heat Transfer Theory and Applications, Department of Mechanical Engineering and School of Medicine, Washington University, Saint Louis, (2005).

Google Scholar

[12] R. P. Feynman, R. B. Leighton, M. Sands, The Feynman Lectures on Physics, Desktop Edition Volume I., New millennium edition, New York, Basic Books, (2013).

Google Scholar

[13] J. L. Plawsky, Transport Phenomena Fundamentals, CRC Press third ed., Boca Raton, CRC Press, Taylor & Francis Group, (2014).

Google Scholar

[14] X. P. V. Maldague, Nondestructive Evaluation of Materials by Infrared Thermography, London: Springer London, (1993).

Google Scholar

[15] M. G. Kondratjev, Reguljarnyj teplovoj režim, Gosstroj, Moskva, (1954).

Google Scholar

[16] J. Juodvalkis, E. Blaževičius, R. A. Vipartas, Methods of unstable heat transfer calculations and experimental verification, Energetika, 2 (2004), 33-39.

Google Scholar

[17] P.V. Cherpakov, N. G. Shimko, Regular thermal regime in a multi-layer medium, J. Eng. Phys. Thermophys, 8 (1965), 54-58.

DOI: 10.1007/bf00833677

Google Scholar

[18] R. Resnick, D. Halliday, J. Walker, Fundamentals of physics, Wiley, New York, (1988).

Google Scholar

[19] C.T. O'Sullivan, Newton's law of cooling - a critical assessment, Am. J. Phys., 58 (1990), 956-960.

Google Scholar

[20] J.T. Kim, CH. Lim, J.K. Choi, Y.K. Lee, A method for the evaluation of heat transfer coefficient by optimization algorithm, Solid State Phenom., 124 (2007), 124-126.

DOI: 10.4028/www.scientific.net/ssp.124-126.1637

Google Scholar

[21] J. Buša, V. Pirč, Š Schrötter, Numerické metódy (in Slovak), Elfa, Košice, (2006).

Google Scholar