Numerical Analysis of the Oscillating Water Column (OWC) Wave Energy Converter (WEC) Considering Different Incident Wave Height

Article Preview

Abstract:

The ocean wave energy conversion into electricity has been increasingly researched in the last years. There are several proposed converters, among them the Oscillating Water Column (OWC) device has been widely studied. The present paper presents a two-dimensional numerical investigation about the fluid dynamics behavior of an OWC Wave Energy Converter (WEC) into electrical energy. The main goal of this work was to numerically analyze the optimized geometric shape obtained in previous work under incident waves with different heights. To do so, the OWC geometric shape was kept constant while the incident wave height was varied. For the numerical solution it was used the Computational Fluid Dynamic (CFD) commercial code FLUENT®, based on the Finite Volume Method (FVM). The multiphasic Volume of Fluid (VOF) model was applied to tackle with the water-air interaction. The computational domain is represented by the OWC device coupled with the wave tank. This work allowed to check the influence of the incident wave height on the hydropneumatic power and the amplification factor of the OWC converter. It was possible to identify that the amplification factor increases as the wave period increases, thereby improving the OWC performance. It is worth to highlight that in the real phenomenon the incident waves on the OWC device have periods, lengths and height variables.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] Aneel, Atlas de Energia Elétrica no Brasil, third ed., Agência Nacional de Energia Elétrica, Brasilia, (2008).

DOI: 10.26512/2016.02.d.20014

Google Scholar

[2] F. Zabihian, A.S. Fung, Review of marine renewable energies: case study of Iran, Renew. Sust. Energ. Rev. 15 (2011) 2461-2474.

DOI: 10.1016/j.rser.2011.02.006

Google Scholar

[3] J. Twindell, T. Weir, Renewable Energy Resources, Taylor & Francis, London, (2006).

Google Scholar

[4] J. Cruz, A. Sarmento, Wave Energy - Introdução aos Aspectos Tecnológicos, Econômicos e Ambientais, Institute of Ambiente, Alfragide, (2004).

Google Scholar

[5] R.W. Carter, Wave energy converters and a submerged horizontal plate, MSc. Thesis in Ocean and Resources Engineering, University of Hawaii, Honolulu, (2005).

Google Scholar

[6] M. das N. Gomes, E. Dos Santos, L.A. Isoldi, L.A.O. Rocha, Two-dimensional geometric optimization of na oscillating water column converter of real sacale, in: Proceedings 22nd International Congress of Mechanical Engineering (COBEM 2013), Ribeirão Preto, (2013).

DOI: 10.26678/abcm.cobem2021.cob2021-0265

Google Scholar

[7] FLUENT 6. 3, 2006. Documentation Manual, information in <http: /www. fluent. com >.

Google Scholar

[8] H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics - The Finite Volume Method, Longman, England, (1995).

Google Scholar

[9] M. das N. Gomes, Modelagem Computacional de um dispositivo do tipo coluna de água oscilante para a aonversao de energia das ondas do mar em energia elétrica, Msc. Thesis, Federal University of Rio Grande, Rio Grande, (2010).

DOI: 10.14808/sci.plena.2017.049915

Google Scholar

[10] M. M Horko, CFD Optimization of an oscillating water column energy converter, MSc Thesis in Engineering Science, School of Mechanical Engineering, The university of Western, Western, (2007).

Google Scholar

[11] Z. Liu, B. Hyun Liu, Application of numerical wave tank to OWC air chamber for wave energy conversion, in: Proceedings of the Eighteenth International Offshore and Polar Engineering Conference, Vancouver, (2008).

Google Scholar

[12] Z. Liu, B. Hyun, K. Hong, Numerical study of air chamber for oscillating water column wave energy convertor, China Ocean Eng. 25 (2011) 169-178.

DOI: 10.1007/s13344-011-0015-8

Google Scholar

[13] R. dosS. Ramalhais, Estudo numérico de um dispositivo de conversão da energia das ondas do tipo coluna de água oscilante (CAO), Msc. Thesis in Mechanical Engineering, University Nova de Lisboa, Lisboa, (2011).

DOI: 10.26678/abcm.creem2020.cre2020-0095

Google Scholar

[14] A. Bejan, Shape and Structure: From Engineering to Nature. Cambridge University Press, New York, (2000).

Google Scholar

[15] A. Bejan, S. Lorente, Design with Constructal Theory, John Wiley & Sons), New Jersey, (2008).

Google Scholar

[16] A. Bejan, Design in Nature, Doulbeday, New York, (2012).

Google Scholar

[17] A. Bejan, S. Lorente, Constructal Law of Design and Evolution: Physics, Biology, Technology, and Society, J. Appl. Phys. 113 (2013) 151301-1 – 151301-20.

Google Scholar

[18] M. dasN. Gomes, C.R. Olinto, L.A.O. Rocha, J.A. Souza, L.A. Isoldi, Computational modeling of a regular wave tank. Therm. Eng. 8 (2009) 44-50.

DOI: 10.1109/mcsul.2009.27

Google Scholar

[19] R.G. Dean, R.A. Dalrymple, Water Wave Mechanics for Engineers and Scientists, World Scientific, Singapore, (1991).

Google Scholar

[20] T.G. Barreiro, Estudo da interação de uma onda monocromática com um conversor de energia, MSc. Thesis in Mechanical Engineering, University Nova de Lisboa, Lisboa, (2009).

Google Scholar

[21] M. dasN. Gomes, E. Dos Santos, L.A. Isoldi, L.A.O. Rocha, Análise de malhas para geração numérica de ondas em tanques, in: Proceedings of VII International Congress of Mechanical Engineering (CONEM), São Luís, (2012).

Google Scholar

[22] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw Hill, New York, (1980).

Google Scholar

[23] C.W. Hirt, B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225.

DOI: 10.1016/0021-9991(81)90145-5

Google Scholar

[24] X. Lv, Q. Zou, D. Reeve, Numerical simulation of overflow at vertical weirs using a hybrid level set/VOF method, Adv. Water Resour. 34 (2011) 1320-1334.

DOI: 10.1016/j.advwatres.2011.06.009

Google Scholar

[25] N. Dizadji, S.E. Sajadian, Modeling and optimization of the chamber of OWC system. Energy 36 (2011), 2360-2366.

DOI: 10.1016/j.energy.2011.01.010

Google Scholar

[26] A.E. Marjani, F.C. Ruiz, M.A. Rodriguez, M.T. P Santos, Numerical modelling in wave energy conversion systems, Energy 33 (2008) 1246-1256.

DOI: 10.1016/j.energy.2008.02.018

Google Scholar