Geometric Evaluation of Forced Convective Flows across an Arrangement of Four Circular Cylinders

Article Preview

Abstract:

The present study consists in a numerical evaluation of an arrangement formed by four cylinders submitted to an unsteady, two-dimensional, incompressible, laminar and forced convective flow. The geometric evaluation is performed through the Constructal Design method. The problem has two restrictions given by the sum of the area of ​​the cylinders and one occupation area and has three degrees of freedom: ST1/D (the ratio between the transverse pitch of the frontal cylinders and the diameter of the cylinders), ST2/D (the ratio between the transverse pitch of the posterior cylinders and the diameter of the cylinders) and SL/D (ratio between the longitudinal pitch of the frontal and posterior cylinders and the diameter of the cylinders). For all simulations the Reynolds number is kept constant, ReD = 100, and two different Prandtl numbers of Pr = 0.71 and 5.83 are considered, which simulates respectively the use of air and water as a fluid. The conservation equations of mass, momentum and energy are solved with the Finite Volume Method (FVM). The main objective is to evaluate the effect of the degrees of freedom on the drag coefficient (CD) and the Nusselt number (NuD) between the cylinders and the surrounding flow, as well as the optimal ST2/D values ​​for three ratios of ST1/D = 1.5, 3.0 and 4.0, these results being obtained for ratios of SL/D = 1.5 and 4.0. Results showed that the ratio changes of ST1/D and ST2/D have a great influence on the drag coefficients and on the Nusselt number of the arrangement formed by the four cylinders, as well as on the geometries leading to the best fluid dynamics and thermal performance.

You might also be interested in these eBooks

Info:

* - Corresponding Author

[1] P. Catalano, M. Wang, G. Iaccarino, P. Moin, Numerical simulation of the flow around a circular cylinder at high Reynolds numbers, Int. J. Heat Fluid Flow 24 (2003) 463-469.

DOI: 10.1016/s0142-727x(03)00061-4

Google Scholar

[2] B. N. Rajani, A. Kandasamy, S. Majumdar, Numerical simulation of laminar flow past a circular cylinder, Appl. Math. Model. 33 (2009) 1228-47.

DOI: 10.1016/j.apm.2008.01.017

Google Scholar

[3] S. Sarkar, S. Sarkar, Vortex dynamics of a cylinder wake in a proximity to a wall, J. Fluid Struct. 26 (1) (2010) 19- 40.

DOI: 10.1016/j.jfluidstructs.2009.08.003

Google Scholar

[4] D. Sumner, Two circular cylinders in cross-flow: a review, J. Fluid Struct. 26 (2010) 849 – 899.

Google Scholar

[5] Y. Kim, S. Lorente, A. Bejan, Constructal multi-tube configuration for natural and forced convection in cross-flow, Int. J. Heat Mass Transfer 53 (2010) 5121-5128.

DOI: 10.1016/j.ijheatmasstransfer.2010.07.053

Google Scholar

[6] T. Bello-Ochende, A. Bejan, Constructal multi-scale cylinders with natural convection, Int. J. Heat Mass Tranfer 48 (2005) 4300 – 4306.

DOI: 10.1016/j.ijheatmasstransfer.2005.05.023

Google Scholar

[7] T. Bello-Ochende, J. P. Meyer, O. I. Ogunronbi, Constructal multiscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer 54 (2011) 2568 – 2577.

DOI: 10.1016/j.ijheatmasstransfer.2011.02.004

Google Scholar

[8] L. A. O. Rocha, M. das N. Gomes, A. F. Porte, M. M. Galarça, I. C. Acunha Jr., F. M. V. da Silva, L. A. Isoldi, E. D. dos Santos, Constructal design of turbulent forced convective flows over a pair of circular cylinders, Proceedings of Constructal Law Conference, Nanjing, China, 2013, p.174.

DOI: 10.5380/reterm.v11i1-2.62004

Google Scholar

[9] G. M. Barros, M. S. Pereira, D. M. do Carmo, R. Cemin, L. A. Isoldi, L. A. O. Rocha, E. D. dos Santos, Geometrical optimization of mixed convective flows over triangular arrangement of cylinders, Therm. Eng. 15 (2) (2016) 84 – 91.

DOI: 10.5380/reterm.v15i2.62180

Google Scholar

[10] A. Bejan, Shape and Structure, from Engineering to Nature. Cambridge University Press, Cambridge, UK, (2000).

Google Scholar

[11] A. Bejan, S. Lorente, J. Lee, Unifying Construtal theory of tree roots, canopies and forests, J. Theor. Biol. 254 (2008) 529–540.

DOI: 10.1016/j.jtbi.2008.06.026

Google Scholar

[12] A. Bejan, S. Lorente, Design with Constructal Theory, Wiley, Hoboken, (2008).

Google Scholar

[13] A. Bejan, Z. P. Zane, Design in Nature. New York, Doubleday, (2012).

Google Scholar

[14] M. K. Rodrigues, R. da S. Brum, J. Vaz, L. A. O. Rocha, E. D. dos Santos, L.A. Isoldi, Numerical investigation about the improvement of the thermal potential of an Earth-Air Heat Exchanger (EAHE) employing the Constructal Design method, Renew. Energy. 80 (2015).

DOI: 10.1016/j.renene.2015.02.041

Google Scholar

[15] E. D. dos Santos, B. N. Machado, M. M. Zanella, M. das N. Gomes, J. A. Souza, L. A. Isoldi, L. A. O. Rocha, Numerical study of the effect of the relative depth on the overtopping wave energy converters according to Constructal Design, Defect Diffus. Forum. 348 (2014).

DOI: 10.4028/www.scientific.net/ddf.348.232

Google Scholar

[16] G. V. Gonzales, E. da S. D. Estrada, L. R. Emmendorfer, L. A. Isoldi, G. Xie, L. A. O. Rocha, E. D. dos Santos, A comparison of simulated annealing schedules for constructal design of complex cavities intruded into conductive walls with internal heat generation, Energy. 93 (2015).

DOI: 10.1016/j.energy.2015.09.058

Google Scholar

[17] T. Ko, K. Ting, Optimal Reynolds number for the fully developed laminar forced convection in a helical coiled tube, Energy. 31 (2006) 2142–2152.

DOI: 10.1016/j.energy.2005.09.001

Google Scholar

[18] H. Najafi, B. Najafi, P. Hoseinpoori, Energy and cost optimization of a plate and fin heat exchanger using genetic algorithm, Appl. Therm. Eng. 31 (2011) 1839–1847.

DOI: 10.1016/j.applthermaleng.2011.02.031

Google Scholar

[19] H. K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics – The Finite Volume Method, 1st Ed, Longman, England, (2007).

Google Scholar

[20] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, McGraw-Hill, New York, USA, (1980).

Google Scholar

[21] FLUENT 6. 3. 26. User's Guide,. Fluent Inc, (2006).

Google Scholar

[22] A. Bejan, Convection Heat Transfer, John Wiley, Durham, USA; (2004).

Google Scholar