Characterisation of Porosity in Zirconia-Based Nanopowders

Article Preview

Abstract:

Porosity in several zirconia-based pressure compacted nanopowders was studied using the positron lifetime technique combined with the mass-density measurements. Two kinds of pores were identified: (i) the larger pores of ≈ 10 to 19 nm diameter arising likely from a formation of secondary particle aggregates, and (ii) the smaller ones (≈ 1 nm) which are obviously of a more complex origin.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

295-298

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Cizek, O. Melikhova, I. Prochazka, J. Kuriplach, R. Kuzel, G. Brauer, W. Anwand, T.E. Konstantinova, I.A. Danilenko, Phys. Rev. B 81 (2010) art. 024116, 19 pp.

DOI: 10.1016/j.vacuum.2007.01.036

Google Scholar

[2] I. Prochazka, J. Cizek, O. Melikhova, J. Kuriplach, W. Anwand, G. Brauer, T.E. Konstantinova, I.A. Danilenko, I.A. Yashchishyn, in: B.N. Ganguly, G. Brauer (Eds. ), Near-Surface Depth Profiling of Solids by Mono-Energetic Positrons, Defects and Diffusion Forum 331, Trans. Tech. Pub., Zurich, 2012, p.181.

DOI: 10.4028/www.scientific.net/ddf.331.181

Google Scholar

[3] I. Prochazka, J. Cizek, O. Melikhova, W. Anwand, T.E. Konstantinova, I.A. Danilenko, in: G. Murch, A. Öchsner, I. Belova (Eds. ), Diffusion in Advanced Materials, Diffusion Foundations 1, Trans. Tech. Pub., Zurich, 2014, p.155 – 172.

DOI: 10.4028/www.scientific.net/df.1.155

Google Scholar

[4] I. Prochazka, J. Cizek, O. Melikhova, T.E. Konstantinova, I.A. Danilenko, Acta Phys. Polonica A 125 (2014) 760 – 763.

DOI: 10.12693/aphyspola.125.760

Google Scholar

[5] I. Prochazka, J. Cizek, O. Melikhova, T.E. Konstantinova, I.A. Danilenko, I.A. Yashchishyn, J. Am. Ceram. Soc. 97 (2014) 982 – 999.

DOI: 10.1111/jace.12716

Google Scholar

[6] I. Prochazka, J. Cizek, O. Melikhova, W. Anwand, G. Brauer, T.E. Konstantinova, I.A. Danilenko, J. Phys.: Conf. Ser. 505 (2014) art. 012020, 4 pp.

DOI: 10.1088/1742-6596/505/1/012020

Google Scholar

[7] T. Konstantinova, I. Danilenko, V. Glazunova, G. Volkova, O. Gorban, J. Nanopart. Res. 13 (2011) 4015 – 4023.

DOI: 10.1007/s11051-011-0329-8

Google Scholar

[8] F. Becvar, J. Cizek, L. Lestak, I. Novotny, I. Prochazka, F. Sebesta, Nucl. Instr. Meth. Phys. Res. A 443 (2000) 557 – 577.

Google Scholar

[9] J. Kansy, Nucl. Instr. Meth. Phys. Res. A 374 (1996) 235 – 244. Information on www. positronannihilation. net.

Google Scholar

[10] I. Prochazka, I. Novotny, F. Becvar, Mater. Sci. Forum 255 – 257 (1997) 772 – 774.

Google Scholar

[11] M. Eldrup, D. Lightbody, J.N. Sherwood, Chem. Phys. 63 (1981) 51 – 58.

Google Scholar

[12] K. Sudarshan, D. Dutta, S.K. Sharma, A. Goswami, P.K. Pujari, J. Phys.: Condens. Matter 19 (2007) art. 386204, 8 pp.

DOI: 10.1088/0953-8984/19/38/386204

Google Scholar

[13] T.L. Dull, W.E. Frieze, D.W. Gidley, J.N. Sun, A.F. Yee, J. Phys. Chem. B 105 (2001) 4657 – 4662. R. Zaleski, M. Sokół, Mater. Sci. Forum 666 (2011) 123 – 128.

Google Scholar

[14] K. Ito, Y. Yagi, S. Hirano, M. Miyayama, T. Kudo, A. Kishimoto, Y. Ujihira, J. Ceram. Soc. Japan 107 (1999) 123 – 127.

DOI: 10.2109/jcersj.107.123

Google Scholar

[15] T.C. Hales, arXiv: math/9811071v2 (2002).

Google Scholar