Investigation of Hydrogen Sorption-Desorption Processes at Gas-Phase Hydrogenation and Defects Formation in Titanium by Means of Electron-Positron Annihilation Techniques

Article Preview

Abstract:

The results of hydrogen sorption and desorption processes investigation at commercially pure titanium alloy during hydrogenation at gas atmosphere are shown in this article. Titanium alloy hydrogenation at temperatures 350, 450 и 550 °С leads to δ-hydrides formation in samples’ volume. Hydrogen sorption rates were calculated on the linear parts of sorption curves and equal to 0.15·10-4 wt%/s at 350 °C, 0.86·10-4 wt%/s at 450 °C, 1.55·10-4 wt%/s at 550 °C. Phase transition in titanium-hydrogen system during thermally stimulated hydrogen desorption investigation by the means of short-wave diffraction of synchrotron radiation shows hydrides dissociation until 520-530 °C. Then α→β transition takes place until 690-720 °C and at this temperatures the phase transformation ends and additional hydrogen desorption peak appears in thermally stimulated hydrogen desorption curve. Defect structure at different hydrogen concentration investigation by the means of electron-positron annihilation techniques shows that hydrogen penetration into titanium leads to crystal lattice expansion. It initiates vacancy-type defects formation which reacts with hydrogen and forms defect-hydrogen complexes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

317-323

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.A. Wert, Hydrogen in metals, Top. Appl. Phys. 29 (1978) 305-330.

Google Scholar

[2] Y.S. Bordulev, R.S. Laptev, V.N. Kudiyarov, A.M. Lider, Investigation of commercially pure titanium structure during accumulation and release of hydrogen by means of positron lifetime and electrical resistivity measurements, Adv. Mater. Res. 880 (2014).

DOI: 10.4028/www.scientific.net/amr.880.93

Google Scholar

[3] R.S. Laptev, Y.S. Bordulev, V.N. Kudiyarov, A.M. Lider, G.V. Garanin, Positron annihilation spectroscopy of defects in commercially pure titanium saturated with hydrogen, Adv. Mater. Res. 880 (2014) 134-140.

DOI: 10.4028/www.scientific.net/amr.880.134

Google Scholar

[4] Y. Fukai, N. Okuma, Formation of superabundant vacancies in Pd hydride under high hydrogen pressures, Phys. Rev. Lett. 73, 12 (1994) 1640-1643.

DOI: 10.1103/physrevlett.73.1640

Google Scholar

[5] Y. Shirai, H. Araki, T. Mori, W. Nakamura, K. Sakaki, Positron annihilation study of lattice defects induced by hydrogen absorption in some hydrogen storage materials, J. Alloy Compd. 330 (2002) 125-131.

DOI: 10.1016/s0925-8388(01)01635-8

Google Scholar

[6] J. Cizek, I. Prochazka, S. Danis, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt, Hydrogen-induced defects in niobium, J. Alloy Compd. 446 (2007) 479-483.

DOI: 10.1016/j.jallcom.2006.11.105

Google Scholar

[7] J. Cizek, I. Prochazka, F. Becvar, R. Kuzel, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt, Hydrogen-induced defects in bulk niobium, Phys. Rev. B. 69, 22 (2004) 224106.

DOI: 10.1103/physrevb.69.224106

Google Scholar

[8] R. Krause-Rehberg, H.S. Leipner. Positron annihilation in semiconductors: Defect Studies, third ed., Berlin Heidelberg, New York (2003).

Google Scholar

[9] V.I. Grafutin, E.P. Prokop'ev, Positron annihilation spectroscopy in materials structure studies, Phys. Usp. 45, 1 (2002) 59-74.

DOI: 10.1070/pu2002v045n01abeh000971

Google Scholar

[10] A. Dupasquier, A.P. Mills, Positron spectroscopy of solids, IOS Press. 125 (1995).

Google Scholar

[11] G.J.C. Carpenter, H.T. Easterday, B.T.A. McKee, A study of defect states in neutron-irradiated zirconium using positron annihilation spectroscopy, J. Nucl. Mater. 116, 2 (1983) 277-286.

DOI: 10.1016/0022-3115(83)90113-7

Google Scholar

[12] R. Laptev, A. Lider, Yu. Bordulev, V. Kudiiarov, G. Garanin, Hydrogenation-induced microstructure changes in titanium, J. Alloys. Compd. 645 (2015) S193-S195.

DOI: 10.1016/j.jallcom.2014.12.257

Google Scholar

[13] V.N. Kudiiarov, L.V. Gulidova, N.S. Pushilina, A.M. Lider, Application of automated complex Gas Reaction Controller for hydrogen storage materials investigation, Adv. Mater. Res. 740 (2013) 690-693.

DOI: 10.4028/www.scientific.net/amr.740.690

Google Scholar

[14] D. Giebel, J. Kansy, A new version of LT program for positron lifetime spectra analysis, Materials Science Forum. 1073, 666 (2010) 138-141.

DOI: 10.4028/www.scientific.net/msf.666.138

Google Scholar

[15] The SP-program. Electronic source, http: /www. ifj. edu. pl/~mdryzek/page_r18. html.

Google Scholar

[16] A. San-Martin, F.D. Manchester, The H− Ti (Hydrogen-Titanium) system, Bulletin of alloy phase diagrams. 8, 1 (1987) 30-42.

DOI: 10.1007/bf02868888

Google Scholar

[17] K.P. Arefyev, O.V. Boev, O.N. Imas, A.M. Lider, A.S. Surkov, I.P. Chernov, Annihilation of positrons in hydrogen-saturated titanium, Phys. Solid State. 45, 1(2003) 1-5.

DOI: 10.1134/1.1537399

Google Scholar

[18] H. Rajainmäki, S. Linderoth, H.E. Hansen, R.M. Nieminen, Defect recovery and hydrogen-vacancy interactions in nickel between 20 and 650 K, Journal of Physics F: Metal Physics. 18, 6 (1988) 1109-1118.

DOI: 10.1088/0305-4608/18/6/014

Google Scholar

[19] J. Čížek, I. Procházka, S. Daniš, G. Brauer, W. Anwand, R. Gemma, E. Nikitin, R. Kirchheim, A. Pundt, R.K. Islamgaliev, Hydrogen-vacancy complexes in electron-irradiated niobium, Phys. Rev. B. 79, 5 (2009) 054108.

DOI: 10.1103/physrevb.79.054108

Google Scholar

[20] K. Sakaki, H. Araki, Y. Shirai, Recovery of Hydrogen Induced Defects and Thermal Desorption of Residual Hydrogen in LaNi5, Mater. Trans. 43, 7 (2002) 1494-1497.

DOI: 10.2320/matertrans.43.1494

Google Scholar

[21] S.E. Kulkova, O.N. Muryzhnikova, K.A. Beketov, Electron and positron characteristics of group IV metal dihydrides, Int. J. Hydrogen Energ. 21, 11 (1996) 1041-1047.

DOI: 10.1016/s0360-3199(96)00100-0

Google Scholar