New Precision Measurement of Hyperfine Splitting of Positronium

Article Preview

Abstract:

Positronium is an ideal system for precision tests of bound-state quantum electrodynamics (QED). One of the most precisely tested quantities of positronium is the ground-state hyperfine splitting (HFS). Recent progress on theoretical calculation revealed that there was a 16.0 ± 3.5 ppm (4.5 σ) discrepancy between the old experimental value and the theoretical calculation. We performed a new measurement which took into account the positronium thermalization effect for the first time. The result was HFS = 203.3942 ± 0.0016 (stat., 8.0 ppm) ± 0.0013 (syst., 6.4 ppm) GHz, which was consistent with the QED calculation within 1.1 σ, whereas it disfavored the old experimental values by 2.6 σ. It also showed that the positronium thermalization effect on HFS was as large as 10 ± 2 ppm, which was consistent with the discrepancy level within 1.5 σ, which could be the reason of the discrepancy. We are planning to preform a new experiment which uses a slow positron beam and perform HFS measurement in vacuum, instead of using gas as all of the other precision measurements. It will be completely free from material effect on HFS, including the thermalization effect. In this proceeding, summary of our previous work and details of the future new experiment are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

75-79

Citation:

Online since:

March 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Karshenboim, Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants, Phys. Rep. 422 (2005) 1-63.

DOI: 10.1016/j.physrep.2005.08.008

Google Scholar

[2] M. Deutsch, S.C. Brown, Zeeman Effect and Hyperfine Splitting, Phys. Rev. 85 (1952) 1047- 1048.

DOI: 10.1103/physrev.85.1047

Google Scholar

[3] A.P. Mills, Jr., G.H. Bearman, New Measurement of the Positronium Hyperfine Interval, Phys. Rev. Lett. 34 (1975) 246-250.

DOI: 10.1103/physrevlett.34.246

Google Scholar

[4] A.P. Mills, Jr., Line-shape effects in the measurement of the positronium hyperfine interval, Phys. Rev. A 27 (1983) 262-267.

DOI: 10.1103/physreva.27.262

Google Scholar

[5] M.W. Ritter, P.O. Egan, V.W. Hughes, K.A. Woodle, Precision determination of the hyperfinestructure interval in the ground state of positronium. V, Phys. Rev. A 30 (1984) 1331-1338.

DOI: 10.1103/physreva.30.1331

Google Scholar

[6] A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, M. Yoshida, K. Tanaka, A. Yamamoto, New precision measurement of hyperfine splitting of positronium, Phys. Lett. B 734 (2014) 338-344.

DOI: 10.1016/j.physletb.2014.05.083

Google Scholar

[7] A. Ishida, New Precise Measurement of the Hyperfine Splitting of Positronium, J. Phys. Chem. Ref. Data 44 (2015) 031212.

Google Scholar

[8] M. Baker, P. Marquard, A.A. Penin, J. Piclum, M. Steinhauser, Hyperfine Splitting in Positronium to O(α7me): One Photon Annihilation Contribution, Phys. Rev. Lett. 112 (2014) 120407.

DOI: 10.1103/physrevlett.112.120407

Google Scholar

[9] G.S. Adkins, R.N. Fell, Positronium hyperfine splitting at order mα7: Light-by-light scattering in the two-photon-exchange channel, Phys. Rev. A 89 (2014) 052518.

DOI: 10.1103/physreva.89.052518

Google Scholar

[10] G.S. Adkins, C. Parsons, M.D. Salinger, R. Wang, R.N. Fell, Positronium energy levels at order mα7: Light-by-light scattering in the two-photon-annihilation channel, Phys. Rev. A 90 (2014) 042502.

DOI: 10.1103/physreva.90.042502

Google Scholar

[11] M.I. Eides, V.A. Shelyuto, Hard nonlogarithmic corrections of order mα7 to hyperfine splitting in positronium, Phys. Rev. D 89 (2014) 111301(R).

DOI: 10.1103/physrevd.89.014034

Google Scholar

[12] G.S. Adkins, C. Parsons, M.D. Salinger, R. Wang, Positronium energy levels at order mα7: Vacuum polarization corrections in the two-photon-annihilation channel, Phys. Lett. B 747 (2015) 551-555.

DOI: 10.1016/j.physletb.2015.06.050

Google Scholar

[13] M.I. Eides, V.A. Shelyuto, Hard three-loop corrections to hyperfine splitting in positronium and muonium, Phys. Rev. D 92 (2015) 013010.

DOI: 10.1103/physrevd.92.013010

Google Scholar

[14] N. Allard, J. Kielkopf, The effect of neutral nonresonant collisions on atomic spectral lines, Rev. Mod. Phys. 54 (1982) 1103.

DOI: 10.1103/revmodphys.54.1103

Google Scholar

[15] A. Miyazaki, T. Yamazaki, T. Suehara, T. Namba, S. Asai, T. Kobayashi, H. Saito, Y. Tatematsu, I. Ogawa, T. Idehara, First millimeter-wave spectroscopy of ground-state positronium, Prog. Theor. Exp. Phys. 2015 (2015) 011C01.

DOI: 10.1093/ptep/ptu181

Google Scholar

[16] Y. Sasaki, A. Miyazaki, A. Ishida, T. Namba, S. Asai, T. Kobayashi, H. Saito, K. Tanaka, A. Yamamoto, Measurement of positronium hyperfine splitting with quantum oscillation, Phys. Lett. B 697 (2011) 121-126.

DOI: 10.1016/j.physletb.2011.01.052

Google Scholar

[17] D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills, Jr., Positronium Hyperfine Interval Measured via Saturated Absorption Spectroscopy, Phys. Rev. Lett. 109 (2012) 073401.

DOI: 10.1103/physrevlett.109.073401

Google Scholar

[18] K. Wada, T. Hyodo, T. Kosuge, Y. Saito, M. Ikeda, S. Ohsawa, T. Shidara, K. Michishio, T. Tachibana, H. Terabe, R.H. Suzuki, Y. Nagashima, Y. Fukaya, M. Maekawa, I. Mochizuki, A. Kawasuso, New experiment stations at KEK Slow Positron Facility, J. Phys.: Conf. Ser. 443 (2013).

DOI: 10.1088/1742-6596/443/1/012082

Google Scholar

[19] L. Liszkay, P. Comini, C. Corbel, P. Debu, P. Grandemange, P. Pérez, J.M. Rey, J.M. Reymond, N. Ruiz, Y. Sacquin, B. Vallage, Present status of the low energy linac-based slow positron beam and positronium spectrometer in Saclay, J. Phys.: Conf. Ser. 505 (2014).

DOI: 10.1088/1742-6596/505/1/012036

Google Scholar