Ionic Liquid Loaded Silica Gel Particles Studied by Spatially Resolved DBS Using a Scanning Positron Beam

Article Preview

Abstract:

The CDB-spectrometer at NEPOMUC enables spatially resolved Doppler Broadening Spectroscopy of the electron-positron annihilation line with a lateral resolution of up to 200~$\mu$m (FWHM). We have applied this technique for studying single particles of silica gel dependent on loading with an altering amount of the ionic liquid [C2MIM][NTf2]. Our results reveal a strong correlation between the observables of DBS and the loading factor which presumably arises from a smaller inner surface of voids in loaded silica gel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-83

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. G. Acker, The characterization of acid-set silica hydrosols, hydrogels, and dried gel, J. Colloid Interface Sci. 43 (1970) 4145.

DOI: 10.1016/0021-9797(70)90099-8

Google Scholar

[2] T. Takeuchi, T. Miwa, Determination of the specific surface area of silica gel by on-column titration with hydrochloric acid, Anal. Chim. Acta 282-3 (1992) 565-570.

DOI: 10.1016/0003-2670(93)80121-z

Google Scholar

[3] M. Haumann, A. Schönweiz, H. Breitzke, G. Buntkowsky, S. Werner, N. Szesni, Solid-State NMR Investigations of Supported Ionic Liquid Phase Water-Gas Shift Catalysts: Ionic Liquid Film Distribution vs. Catalyst Performance, Chem. Eng. Technol. 35-8 (2012).

DOI: 10.1002/ceat.201200025

Google Scholar

[4] C. Herold, H. Ceeh, T. Gigl, M. Reiner, M. Haumann, A. Schönweiz, C. Hugenschmidt, Nanometer size pores in ionic liquidloaded silica gel characterized bypositron lifetime spectroscopy, Phys. Status Solidi A (2015) DOI 10. 1002/pssa. 201532487.

DOI: 10.1002/pssa.201532487

Google Scholar

[5] M. Stadlbauer, C. Hugenschmidt, K. Schreckenbach, New design of the CDB-spectrometer at NEPOMUC for T-dependent defect spectroscopy in Mg, Appl. Surf. Sci. 255 1 (2008) 136-138.

DOI: 10.1016/j.apsusc.2008.05.287

Google Scholar

[6] M. Stadlbauer, Investigation of the chemical vicinity of defects in Mg and AZ31 with positron coincident Doppler broadening spectroscopy, PhD Thesis at Technische Universität München (2008).

Google Scholar

[7] M. Reiner, Point Defects in MnSi and YBCO Studied by Doppler Broadening Spectrsocopy Using a Positron Beam, PhD Thesis at Technische Universität München (2015).

Google Scholar

[8] M. Reiner, P. Pikart, C. Hugenschmidt, In-situ (C) DBS at high temperatures at the NEPOMUC positron beam line, J. Phys.: Conf. Ser. 443 (2013) 012071.

DOI: 10.1088/1742-6596/443/1/012071

Google Scholar

[9] C. Hugenschmidt, C. Piochacz, M. Reiner, K. Schreckenbach, The NEPOMUC upgrade and advanced positron beam experiments, New J. of Phys. 14 (2012) 055027.

DOI: 10.1088/1367-2630/14/5/055027

Google Scholar

[10] T. Gigl, C. Piochacz, M. Reiner, C. Hugenschmidt, Positronbeam for µm resolved coincident Doppler broadening spectroscopy at NEPOMUC, J. Phys.: Conf. Ser. 505 (2014) 012032.

DOI: 10.1088/1742-6596/505/1/012032

Google Scholar