Thermomagnetic Convection in Porous Media: Effect of Anisotropy and Local Thermal Nonequilibrium

Article Preview

Abstract:

The onset of thermomagnetic convection in an anisotropic layer of Darcy porous medium in the presence of a uniform vertical magnetic field is investigated using a local thermal nonequilibrium (LTNE) model for energy equation representing the solid and fluid phases separately. Anisotropies in permeability as well as in fluid and solid thermal conductivities are considered. The principle of exchange of stability is shown to be valid. Asymptotic solutions for the Rayleigh number for both small and large values of scaled interphase heat transfer coefficient are presented and the comparison of results with those computed numerically shows good agreement. The mechanical and thermal anisotropy parameters have opposing influence on the stability characteristics of the system. Besides, the influence of magnetic parameters on the instability of the system is also reported.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-156

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R.E. Rosensweig, Ferrohydrodynamics, Cambridge University Press, Cambridge, (1985).

Google Scholar

[2] B.M. Berkovsky, V.F. Medvedev, M.S. Krakov, Magnetic Fluids, Engineering Applications, Oxford University Press, New York, (1993).

Google Scholar

[3] B.M. Berkovsky, V.G. Bashtovoy, Magneti fluids and applications hand book, Begell house, Newyork, (1996).

Google Scholar

[4] S. Odenbach, Recent progress in magnetic fluid research, J. Phys. Condens. Matter. 16 (2004) R1135-R1150.

DOI: 10.1088/0953-8984/16/32/r02

Google Scholar

[5] I. Nkurikiyimfura, Y. Wang, Z. Pan, Heat transfer enhancement by magnetic nanofluids–a review, Rene. Sust. Energy Rev. 21 (2013) 548–561.

DOI: 10.1016/j.rser.2012.12.039

Google Scholar

[6] M. Bahiraei, M. Hangi, Flow and heat transfer characteristics of magnetic nanofluids: A review, J. Magn. Magn. Matter. 374 (2015) 125–138.

DOI: 10.1016/j.jmmm.2014.08.004

Google Scholar

[7] B.A. Finlayson, Convective instability of ferromagnetic fluids, J. Fluid Mech. 40 (1970) 753–767.

DOI: 10.1017/s0022112070000423

Google Scholar

[8] P.N. Kaloni, J.X. Lou, Convective instability of magnetic fluids, Phys. Rev. E 70 (2004) 026313–026324.

Google Scholar

[9] H. Engler, S. Odenbach, Parametric modulation of thermomagnetic convection in magnetic fluids, J. Phys. Condens. Matter, 20 (2008) 204135-1–204135-5.

DOI: 10.1088/0953-8984/20/20/204135

Google Scholar

[10] I.S. Shivakumara, Jinho Lee, C.E. Nanjundappa, Onset of thermogravitational convection in a ferrofluid layer with temperature dependent viscosity, ASME J. Heat Transf. 134 (2012) 0125011–0125017.

DOI: 10.1115/1.4004758

Google Scholar

[11] R.E. Rosensweig, M. Zahn, T. Volger, Stabilization of fluid penetration through a porous medium using magnetizable fluids, In: Berkovsky, B (ed. ), Thermomechanics of magnetic fluids, Hemisphere, Washington D. C. (1978) 195-211.

Google Scholar

[12] M. Zhan, R.E. Rosensweig, Stability of magnetic fluid penetration through a porous medium with uniform magnetic field oblique to the interface, IEEE Trans. Mag. MAG 16 (1980) 275-282.

DOI: 10.1109/tmag.1980.1060586

Google Scholar

[13] Y. Qin, J. Chadam, A non-linear stability problem for ferromagnetic fluids in a porous medium, Appl. Math. Lett. 8(2) (1995) 25-29.

Google Scholar

[14] I.S. Shivakumara, C.E. Nanjundappa, M. Ravisha, Thermomagnetic convection in a magnetic nanofluids fluid saturated porous medium, Int. J. Appl. Math. Engg. Sci. 2(2) (2008) 157-170.

Google Scholar

[15] I.S. Shivakumara, C.E. Nanjundappa, M. Ravisha, Effect of boundary conditions on the onset of thermomagnetic convection in a ferrofluid saturated porous medium, ASME J. Heat Transf. 131 (2009)101003-1-9.

DOI: 10.1115/1.3160540

Google Scholar

[16] C.E. Nanjundappa, I.S. Shivakumara, M. Ravisha, The onset of buoyancy-driven convection in a ferromagnetic fluid saturated porous medium, Meccanica 45 (2010) 213–226.

DOI: 10.1007/s11012-009-9238-7

Google Scholar

[17] M. Sözen, K. Vafai, Analysis of the non-thermal equilibrium condensing flow of a gas through a packed bed, Int. J. Heat and Mass Transf. 33(6) (1990) 1247-1261.

DOI: 10.1016/0017-9310(90)90255-s

Google Scholar

[18] D.A. Nield, A. Bejan, Convection in Porous Media, fourth ed., Springer, New York, (2013).

Google Scholar

[19] N. Banu, D.A.S. Rees, Onset of Darcy–Benard convection using a thermal non-equilibrium model, Int. J. Heat and Mass Transf. 45 (2002) 2221–2228.

DOI: 10.1016/s0017-9310(01)00331-3

Google Scholar

[20] Jinho Lee, I.S. Shivakumara, M. Ravisha, Effect of thermal non-equilibrium on convective instability in a ferromagnetic fluid saturated porous medium, Trans. Porous Med. 86 (2011) 103-124.

DOI: 10.1007/s11242-010-9608-6

Google Scholar

[21] I.S. Shivakumara, Jinho Lee, M. Ravisha, R. Gangadhara Reddy, Effects of MFD viscosity and LTNE on the onset of ferromagnetic convection in a porous medium, Int. J. Heat Mass Trans. 54 (2011) 2630-2641.

DOI: 10.1016/j.ijheatmasstransfer.2011.01.022

Google Scholar

[22] I.S. Shivakumara, Chiu-On Ng, M. Ravisha, Ferromagnetic convection in a heterogeneous Darcy porous medium using a local thermal non-equilibrium (LTNE) model, Trans. Porous Med. 90 (2011) 529-544.

DOI: 10.1007/s11242-011-9798-6

Google Scholar

[23] I.S. Shivakumara, Jinho Lee, M. Ravisha, R. Gangadhara Reddy, The effects of local thermal nonequilibrium and MFD viscosity on the onset of Brinkman ferroconvection, Meccanica 47 (2012) 1359-1378.

DOI: 10.1007/s11012-011-9519-9

Google Scholar

[24] I.S. Shivakumara, Jinho Lee, M. Ravisha, R. Gangadhara Reddy, Effect of rotation on ferromagnetic porous convection with a thermal non-equilibrium model, Meccanica 49 (2014) 1139–1157.

DOI: 10.1007/s11012-013-9859-8

Google Scholar

[25] Y. Shiina, M. Hishida, Critical Rayleigh number of natural convection in high porosity anisotropic horizontal porous layers, Int. J. Heat and Mass Transf. 53 (2010) 1507–1513.

DOI: 10.1016/j.ijheatmasstransfer.2009.11.045

Google Scholar

[26] S. Saravanan, Centrifugal acceleration induced convection in a magnetic fluid saturated anisotropic rotating porous medium, Trans. Porous Med. 77 (2009) 79–86. DOI 10. 1007/s11242-008-9263-3.

DOI: 10.1007/s11242-008-9263-3

Google Scholar

[27] C.E. Nanjundappa, I.S. Shivakumara, Jinho Lee, M. Ravisha, The onset of Brinkman ferroconvection in an anisotropic porous medium, Int. J. Engg. Sci. 49 (2011) 497–508.

DOI: 10.1016/j.ijengsci.2010.12.014

Google Scholar

[28] R. Sekar, K. Raju, R. Vasanthakumari, A linear analytical study of Soret-driven Ferrothermohaline convection in an anisotropic porous medium, J. Mag. Mag. Mat. 331 (2013) 122–128.

DOI: 10.1016/j.jmmm.2012.10.028

Google Scholar

[29] M.S. Malashetty, I.S. Shivakumara, Sridhar Kulkarni, The onset of convection in an anisotropic porous layer using a thermal non-equilibrium model, Trans. Porous Med. 60 (2005) 199–215.

DOI: 10.1007/s11242-004-5130-z

Google Scholar

[30] G. Neale, Degrees of anisotropy for fluid flow and diffusion (electrical conduction) through anisotropic porous media, American Inst. Chem. Engg. J. 23 (1977) 56-6.

DOI: 10.1002/aic.690230110

Google Scholar

[31] J.F. Epherre, Criterion for the appearance of natural convection in an anisotropic porous layer, Int. J. Chem. Eng. (English translation) 17 (1975) 615-616.

Google Scholar

[32] G.K. Auernhammer, H.R. Brand, Thermal convection in a rotating layer of a magnetic fluid, Eur. Phys. J. B 16 (2000) 157-168.

DOI: 10.1007/s100510070261

Google Scholar