Impact of Frictional Heating on MHD Radiative Ferrofluid Past a Convective Shrinking Surface

Article Preview

Abstract:

The intention of this analysis is to analyse the heat transfer impact on MHD ferrofluid flow over a shrinking sheet. This study is carried out under the knowledge of frictional heating, Biot number and thermal radiation. With the assist of suitable similarity transformations, the governing equations are transmuted into coupled nonlinear ODE’s and then numerically solved by R.K. Fehlberg Technique. For this study, we considered the ferrofluid. The behavior of sundry physical parameters on fluid velocity, temperature, skin friction coefficient and local Nusselt number are discussed and presented through plots and tables. Through this investigation, we found that the magnitude of fluid velocity enhances with rising values of volume fraction of nanoparticles. Also, it is found that the Eckert number has tendency to reduce the rate of heat transport.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

157-174

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.S. Papell, U.S. Patent 3215572 A (1965).

Google Scholar

[2] D.N. Paulson and J.C. Wheatley, Evidence for electronic ferromagnetism in super fluid 3He-A, Phys. Rev. Lett. 40 (1978) 557.

Google Scholar

[3] T. Albrecht, C. Buhrer, M. Fahnle, K. Maier, D. Platzek, J. Reske, First observation of ferromagnetism and ferromagnetic domains in a liquid metal, Appl. Phys. 65 (1997) 215-220.

DOI: 10.1007/s003390050569

Google Scholar

[4] W.A. Khan, Z.H. Khan, R.U. Haq, Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux, Eur. Phys. J. plus 130 (2015)doi: 10. 1140/epjp/i2015-15086-4.

DOI: 10.1140/epjp/i2015-15086-4

Google Scholar

[5] M. Sheikholeslami, M.M. Rashidi, D.D. Ganji, Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid, Comp. Meth. Appl. Mech. Eng. 294 (2015) 299-312.

Google Scholar

[6] M. Sheikholeslami, M.K. Sadoughi, Numerical modelling for Fe3O4-water nanofluid flow in porous medium considering MFD viscosity, J. Mol. Liq. doi: 10. 1016/j. molliq. 2017. 07. 004.

DOI: 10.1016/j.molliq.2017.07.004

Google Scholar

[7] M. Ashouri, M.B. Shafii, Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity, J. Mag. Mag. Mater. (2017) http: /dx. doi. org/10. 1016/j. jmmm. 2017. 06. 089.

DOI: 10.1016/j.jmmm.2017.06.089

Google Scholar

[8] M.E. Ali, N. Sandeep, Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study, Res. Phys. 7 (2017) 21-30.

DOI: 10.1016/j.rinp.2016.11.055

Google Scholar

[9] H.I. Andersson, J.B. Aarseth, B.S. Dandapat, Heat transfer in a liquid film on an unsteady stretched surface, Int. J. Heat Mass Transf. 43 (2000) 69-74.

DOI: 10.1016/s0017-9310(99)00123-4

Google Scholar

[10] D. Pal, H. Mondal, Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation, Comm. Nonlinear Sci. Numer. Simul. 15 (2010) 1197-1209.

DOI: 10.1016/j.cnsns.2009.05.051

Google Scholar

[11] R.P. Sharma, K. Avinash, N. Sandeep, O.D. Makinde, Thermal radiation effect on non- Newtonian fluid flow over a stretched sheet of non-uniform thickness, Def. Diff. Forum 377 (2017) 242-259.

DOI: 10.4028/www.scientific.net/ddf.377.242

Google Scholar

[12] P. Ram, V.K. Joshi, O.D. Makinde, Unsteady convective flow of hydrocarbon magnetite nano-suspension in the presence of stretching effects, Def. Diff. Forum 377 (2017) 155-165.

DOI: 10.4028/www.scientific.net/ddf.377.155

Google Scholar

[13] W. Ibrahim, O.D. Makinde, The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate, Comp. Fluids 86 (2013) 433-441.

DOI: 10.1016/j.compfluid.2013.07.029

Google Scholar

[14] M. Hussain, M. Ashraf, S. Nadeem, M. Khan, Radiation effects on the thermal boundary layer flow of a micropolar fluid towards a permeable stretching sheet, J. Franklin Inst. 350 (2013) 194-210.

DOI: 10.1016/j.jfranklin.2012.07.005

Google Scholar

[15] M. Qasim, Z.H. Khan, W.A. Khan, I.A. Shah, MHD boundary layer slip flow and heat transfer of Ferrofluid along a stretching cylinder with prescribed heat flux, Plos One, 9 (2014) Article Id: e83930.

DOI: 10.1371/journal.pone.0083930

Google Scholar

[16] A. Gul, I. Khan, S. Shafie, A. Khalid, A. Khan, Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel, Plos One (2015) Article Id: e0141213.

DOI: 10.1371/journal.pone.0141213

Google Scholar

[17] T. Hayat, M.W.A. Khan, A. Alsaedi, M. Ayub, M.I. Khan, Stretched flow of Oldroyd-B fluid with Cattaneo-Christov heat flux, Res. Phys. (2017) http: /dx. doi. org/10. 1016/ j. rinp. 2017. 06. 050.

DOI: 10.1016/j.rinp.2017.06.050

Google Scholar

[18] Z. Abbas, T. Hayat, Radiation effects on MHD flow in a porous space, Int. J. Heat Mass Transf. 51 (2008) 1024-1033.

DOI: 10.1016/j.ijheatmasstransfer.2007.05.031

Google Scholar

[19] M.J. Colaco, G.S. Dulikravich, H.R. Orlande, Magnetohydrodynamic simulations using radial basis functions, Int. J. Heat Mass Transf. 52 (2009) 5932-5939.

DOI: 10.1016/j.ijheatmasstransfer.2009.08.009

Google Scholar

[20] S. Nadeem, R.U. Haq, C. Lee, MHD flow of a Casson fluid over an exponentially shrinking sheet, Sci. Iran. B 19 (2012) 1550-1553.

DOI: 10.1016/j.scient.2012.10.021

Google Scholar

[21] K. Anantha Kumar, J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alex. Eng. J. (2017) http: /dx. doi. org/10. 1016/j. aej. 2016. 11. 013.

DOI: 10.1016/j.aej.2016.11.013

Google Scholar

[22] N. Sandeep, S. Saleem, MHD flow and heat transfer of a dusty nanofluid over a stretching surface in a porous medium, Jordan J. Civil Eng. 11 (2017) 149-164.

Google Scholar

[23] M.M. Rashidi, S. Dinarvand, Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method, Nonlinear Anal. Real World Appl. 10 (2009) 2346-2356.

DOI: 10.1016/j.nonrwa.2008.04.018

Google Scholar

[24] S. Nadeem, R.U. Haq, N.S. Akbar, Z.H. Khan, MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet, Alex. Eng. J. 52 (2013) 577-582.

DOI: 10.1016/j.aej.2013.08.005

Google Scholar

[25] J.A. Khan, M. Mustafa, T. Hayat, M. Sheikholeslami, A. Alsaedi, Three-dimensional flow of nanofluid induced by an exponentially stretching sheet: An application to solar energy, Plos One 10 (2015) Article Id: e0116603.

DOI: 10.1371/journal.pone.0116603

Google Scholar

[26] J.A. Khan, M. Mustafa, T. Hayat, A. Alsaedi, Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy, Int. J. Heat Mass Transf. 86 (2015) 158-164.

DOI: 10.1016/j.ijheatmasstransfer.2015.02.078

Google Scholar

[27] M. Khan, W.A. Khan, A.S. Alshomrani, Non-linear radiative flow of three-dimensional Burgers nanofluid with new mass flux effect, Int. J. Heat Mass Transf. 101 (2016) 570-576.

DOI: 10.1016/j.ijheatmasstransfer.2016.05.056

Google Scholar

[28] P.M. Krishna, N. Sandeep, R.P. Sharma, O.D. Makinde: Thermal radiation effect on 3D slip motion of Al-Cu-water and Cu-water nanofluids over a variable thickness stretched surface, Def. Diff. Forum 377 (2017) 141-154.

DOI: 10.4028/www.scientific.net/ddf.377.141

Google Scholar

[29] P. Carragher, L.J. Crane, Heat transfer on a continuous stretching sheet, ZAAM-J. Appl. Math. Mech. 62 (1982) 564-565.

DOI: 10.1002/zamm.19820621009

Google Scholar

[30] I. Pop, T.Y. Na, Unsteady flow past a stretching sheet, Mech. Res. Comm. 23 (1996) 413-422.

DOI: 10.1016/0093-6413(96)00040-7

Google Scholar

[31] S. Nadeem, M. Awais, Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity, Phys. Lett. A 372 (2008) 4965-4972.

DOI: 10.1016/j.physleta.2008.05.048

Google Scholar

[32] R. Cortell, On a Certain boundary value problem arising in shrinking sheet flows, Appl. Math. Comp. 217 (2010) 4086-4093.

DOI: 10.1016/j.amc.2010.10.024

Google Scholar

[33] T. Fang, S. Yao, I. Pop, Flow and heat transfer over a generalized stretching/shrinking wall problem-exact solutions of Navier-Stokes equations, Int. J. Non-linear Mech. 46 (2011) 1116-1127.

DOI: 10.1016/j.ijnonlinmec.2011.04.014

Google Scholar

[34] S.K. Nandy, S. Sidui, T.R. Mahapatra, Unsteady MHD boundary-layer flow and heat transfer of nanofluid over a permeable shrinking sheet in the presence of thermal radiation, Alex. Eng. J. 53 (2014) 929-937.

DOI: 10.1016/j.aej.2014.09.001

Google Scholar

[35] A. Ara, N.A. Khan, H. Khan, F. Sultan, Radiation effect on boundary layer flow of an Eyring-Powell fluid over an exponentially shrinking sheet, Ain Shams Eng. J. 5 (2014) 1337-1342.

DOI: 10.1016/j.asej.2014.06.002

Google Scholar

[36] K. Bhattacharyya, Heat transfer analysis in unsteady boundary layer stagnation point flow towards a shrinking/stretching sheet, Ain Shams Eng. J. 4 (2013) 259-264.

DOI: 10.1016/j.asej.2012.07.002

Google Scholar

[37] J.A. Khan, M. Mustafa, T. Hayat, A. Alsaedi, Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy, Int. J. Heat Mass Transf. 86 (2015) 158-164.

DOI: 10.1016/j.ijheatmasstransfer.2015.02.078

Google Scholar

[38] J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Effect of frictional heating on radiativeferrofluid flow over a slendering stretching sheet with aligned magnetic field, Europ. Phys. J. Plus 132 (2017)doi.

DOI: 10.1140/epjp/i2017-11287-1

Google Scholar

[39] M.Y. Malik, A. Hussain, T. Salahuddin, M. Awais, Effects of viscous dissipation on MHD boundary layer flow of Sisko fluid over a stretching cylinder, AIP Adv. 6 (2016) Article Id: 035009.

DOI: 10.1063/1.4944347

Google Scholar

[40] B. Ramandevi, J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux, Alex. Eng. J. (2017).

DOI: 10.1016/j.aej.2017.01.026

Google Scholar

[41] G. Mahanta, S. Shaw, 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary conditions, Alex. Eng. J. 54 (2015) 653-659.

DOI: 10.1016/j.aej.2015.04.014

Google Scholar

[42] M.G. Reddy, N. Sandeep, Heat and Mass transfer in radiative MHD Carreau fluid with cross-diffusion, Ain Shams Eng. J. (2016) https: /dx. doi. org/10. 1016/j. asej. 2016. 06. 0212.

DOI: 10.1016/j.asej.2016.06.012

Google Scholar

[43] T. Hayat, M. Imtiaz, A. Alsaedi, MHD 3D flow of nanofluid in presence of convective conditions, J. Mol. Liq. (2015) 203-208.

DOI: 10.1016/j.molliq.2015.09.012

Google Scholar

[44] A. Muhammad and O.D. Makinde, Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface, Defect and Diffusion Forum 374 (2017) 29-46.

DOI: 10.4028/www.scientific.net/ddf.374.29

Google Scholar

[45] O.D. Makinde, N. Sandeep, I.L. Animasaun and M.S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect and Diffusion Forum 374 (2017) 67-82.

DOI: 10.4028/www.scientific.net/ddf.374.67

Google Scholar