[1]
S.S. Papell, U.S. Patent 3215572 A (1965).
Google Scholar
[2]
D.N. Paulson and J.C. Wheatley, Evidence for electronic ferromagnetism in super fluid 3He-A, Phys. Rev. Lett. 40 (1978) 557.
Google Scholar
[3]
T. Albrecht, C. Buhrer, M. Fahnle, K. Maier, D. Platzek, J. Reske, First observation of ferromagnetism and ferromagnetic domains in a liquid metal, Appl. Phys. 65 (1997) 215-220.
DOI: 10.1007/s003390050569
Google Scholar
[4]
W.A. Khan, Z.H. Khan, R.U. Haq, Flow and heat transfer of ferrofluids over a flat plate with uniform heat flux, Eur. Phys. J. plus 130 (2015)doi: 10. 1140/epjp/i2015-15086-4.
DOI: 10.1140/epjp/i2015-15086-4
Google Scholar
[5]
M. Sheikholeslami, M.M. Rashidi, D.D. Ganji, Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid, Comp. Meth. Appl. Mech. Eng. 294 (2015) 299-312.
Google Scholar
[6]
M. Sheikholeslami, M.K. Sadoughi, Numerical modelling for Fe3O4-water nanofluid flow in porous medium considering MFD viscosity, J. Mol. Liq. doi: 10. 1016/j. molliq. 2017. 07. 004.
DOI: 10.1016/j.molliq.2017.07.004
Google Scholar
[7]
M. Ashouri, M.B. Shafii, Numerical simulation of magnetic convection ferrofluid flow in a permanent magnet-inserted cavity, J. Mag. Mag. Mater. (2017) http: /dx. doi. org/10. 1016/j. jmmm. 2017. 06. 089.
DOI: 10.1016/j.jmmm.2017.06.089
Google Scholar
[8]
M.E. Ali, N. Sandeep, Cattaneo-Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: A numerical study, Res. Phys. 7 (2017) 21-30.
DOI: 10.1016/j.rinp.2016.11.055
Google Scholar
[9]
H.I. Andersson, J.B. Aarseth, B.S. Dandapat, Heat transfer in a liquid film on an unsteady stretched surface, Int. J. Heat Mass Transf. 43 (2000) 69-74.
DOI: 10.1016/s0017-9310(99)00123-4
Google Scholar
[10]
D. Pal, H. Mondal, Hydromagnetic non-Darcy flow and heat transfer over a stretching sheet in the presence of thermal radiation and Ohmic dissipation, Comm. Nonlinear Sci. Numer. Simul. 15 (2010) 1197-1209.
DOI: 10.1016/j.cnsns.2009.05.051
Google Scholar
[11]
R.P. Sharma, K. Avinash, N. Sandeep, O.D. Makinde, Thermal radiation effect on non- Newtonian fluid flow over a stretched sheet of non-uniform thickness, Def. Diff. Forum 377 (2017) 242-259.
DOI: 10.4028/www.scientific.net/ddf.377.242
Google Scholar
[12]
P. Ram, V.K. Joshi, O.D. Makinde, Unsteady convective flow of hydrocarbon magnetite nano-suspension in the presence of stretching effects, Def. Diff. Forum 377 (2017) 155-165.
DOI: 10.4028/www.scientific.net/ddf.377.155
Google Scholar
[13]
W. Ibrahim, O.D. Makinde, The effect of double stratification on boundary-layer flow and heat transfer of nanofluid over a vertical plate, Comp. Fluids 86 (2013) 433-441.
DOI: 10.1016/j.compfluid.2013.07.029
Google Scholar
[14]
M. Hussain, M. Ashraf, S. Nadeem, M. Khan, Radiation effects on the thermal boundary layer flow of a micropolar fluid towards a permeable stretching sheet, J. Franklin Inst. 350 (2013) 194-210.
DOI: 10.1016/j.jfranklin.2012.07.005
Google Scholar
[15]
M. Qasim, Z.H. Khan, W.A. Khan, I.A. Shah, MHD boundary layer slip flow and heat transfer of Ferrofluid along a stretching cylinder with prescribed heat flux, Plos One, 9 (2014) Article Id: e83930.
DOI: 10.1371/journal.pone.0083930
Google Scholar
[16]
A. Gul, I. Khan, S. Shafie, A. Khalid, A. Khan, Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel, Plos One (2015) Article Id: e0141213.
DOI: 10.1371/journal.pone.0141213
Google Scholar
[17]
T. Hayat, M.W.A. Khan, A. Alsaedi, M. Ayub, M.I. Khan, Stretched flow of Oldroyd-B fluid with Cattaneo-Christov heat flux, Res. Phys. (2017) http: /dx. doi. org/10. 1016/ j. rinp. 2017. 06. 050.
DOI: 10.1016/j.rinp.2017.06.050
Google Scholar
[18]
Z. Abbas, T. Hayat, Radiation effects on MHD flow in a porous space, Int. J. Heat Mass Transf. 51 (2008) 1024-1033.
DOI: 10.1016/j.ijheatmasstransfer.2007.05.031
Google Scholar
[19]
M.J. Colaco, G.S. Dulikravich, H.R. Orlande, Magnetohydrodynamic simulations using radial basis functions, Int. J. Heat Mass Transf. 52 (2009) 5932-5939.
DOI: 10.1016/j.ijheatmasstransfer.2009.08.009
Google Scholar
[20]
S. Nadeem, R.U. Haq, C. Lee, MHD flow of a Casson fluid over an exponentially shrinking sheet, Sci. Iran. B 19 (2012) 1550-1553.
DOI: 10.1016/j.scient.2012.10.021
Google Scholar
[21]
K. Anantha Kumar, J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Magnetohydrodynamic Cattaneo-Christov flow past a cone and a wedge with variable heat source/sink, Alex. Eng. J. (2017) http: /dx. doi. org/10. 1016/j. aej. 2016. 11. 013.
DOI: 10.1016/j.aej.2016.11.013
Google Scholar
[22]
N. Sandeep, S. Saleem, MHD flow and heat transfer of a dusty nanofluid over a stretching surface in a porous medium, Jordan J. Civil Eng. 11 (2017) 149-164.
Google Scholar
[23]
M.M. Rashidi, S. Dinarvand, Purely analytic approximate solutions for steady three-dimensional problem of condensation film on inclined rotating disk by homotopy analysis method, Nonlinear Anal. Real World Appl. 10 (2009) 2346-2356.
DOI: 10.1016/j.nonrwa.2008.04.018
Google Scholar
[24]
S. Nadeem, R.U. Haq, N.S. Akbar, Z.H. Khan, MHD three-dimensional Casson fluid flow past a porous linearly stretching sheet, Alex. Eng. J. 52 (2013) 577-582.
DOI: 10.1016/j.aej.2013.08.005
Google Scholar
[25]
J.A. Khan, M. Mustafa, T. Hayat, M. Sheikholeslami, A. Alsaedi, Three-dimensional flow of nanofluid induced by an exponentially stretching sheet: An application to solar energy, Plos One 10 (2015) Article Id: e0116603.
DOI: 10.1371/journal.pone.0116603
Google Scholar
[26]
J.A. Khan, M. Mustafa, T. Hayat, A. Alsaedi, Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy, Int. J. Heat Mass Transf. 86 (2015) 158-164.
DOI: 10.1016/j.ijheatmasstransfer.2015.02.078
Google Scholar
[27]
M. Khan, W.A. Khan, A.S. Alshomrani, Non-linear radiative flow of three-dimensional Burgers nanofluid with new mass flux effect, Int. J. Heat Mass Transf. 101 (2016) 570-576.
DOI: 10.1016/j.ijheatmasstransfer.2016.05.056
Google Scholar
[28]
P.M. Krishna, N. Sandeep, R.P. Sharma, O.D. Makinde: Thermal radiation effect on 3D slip motion of Al-Cu-water and Cu-water nanofluids over a variable thickness stretched surface, Def. Diff. Forum 377 (2017) 141-154.
DOI: 10.4028/www.scientific.net/ddf.377.141
Google Scholar
[29]
P. Carragher, L.J. Crane, Heat transfer on a continuous stretching sheet, ZAAM-J. Appl. Math. Mech. 62 (1982) 564-565.
DOI: 10.1002/zamm.19820621009
Google Scholar
[30]
I. Pop, T.Y. Na, Unsteady flow past a stretching sheet, Mech. Res. Comm. 23 (1996) 413-422.
DOI: 10.1016/0093-6413(96)00040-7
Google Scholar
[31]
S. Nadeem, M. Awais, Thin film flow of an unsteady shrinking sheet through porous medium with variable viscosity, Phys. Lett. A 372 (2008) 4965-4972.
DOI: 10.1016/j.physleta.2008.05.048
Google Scholar
[32]
R. Cortell, On a Certain boundary value problem arising in shrinking sheet flows, Appl. Math. Comp. 217 (2010) 4086-4093.
DOI: 10.1016/j.amc.2010.10.024
Google Scholar
[33]
T. Fang, S. Yao, I. Pop, Flow and heat transfer over a generalized stretching/shrinking wall problem-exact solutions of Navier-Stokes equations, Int. J. Non-linear Mech. 46 (2011) 1116-1127.
DOI: 10.1016/j.ijnonlinmec.2011.04.014
Google Scholar
[34]
S.K. Nandy, S. Sidui, T.R. Mahapatra, Unsteady MHD boundary-layer flow and heat transfer of nanofluid over a permeable shrinking sheet in the presence of thermal radiation, Alex. Eng. J. 53 (2014) 929-937.
DOI: 10.1016/j.aej.2014.09.001
Google Scholar
[35]
A. Ara, N.A. Khan, H. Khan, F. Sultan, Radiation effect on boundary layer flow of an Eyring-Powell fluid over an exponentially shrinking sheet, Ain Shams Eng. J. 5 (2014) 1337-1342.
DOI: 10.1016/j.asej.2014.06.002
Google Scholar
[36]
K. Bhattacharyya, Heat transfer analysis in unsteady boundary layer stagnation point flow towards a shrinking/stretching sheet, Ain Shams Eng. J. 4 (2013) 259-264.
DOI: 10.1016/j.asej.2012.07.002
Google Scholar
[37]
J.A. Khan, M. Mustafa, T. Hayat, A. Alsaedi, Three-dimensional flow of nanofluid over a non-linearly stretching sheet: An application to solar energy, Int. J. Heat Mass Transf. 86 (2015) 158-164.
DOI: 10.1016/j.ijheatmasstransfer.2015.02.078
Google Scholar
[38]
J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Effect of frictional heating on radiativeferrofluid flow over a slendering stretching sheet with aligned magnetic field, Europ. Phys. J. Plus 132 (2017)doi.
DOI: 10.1140/epjp/i2017-11287-1
Google Scholar
[39]
M.Y. Malik, A. Hussain, T. Salahuddin, M. Awais, Effects of viscous dissipation on MHD boundary layer flow of Sisko fluid over a stretching cylinder, AIP Adv. 6 (2016) Article Id: 035009.
DOI: 10.1063/1.4944347
Google Scholar
[40]
B. Ramandevi, J.V. Ramana Reddy, V. Sugunamma, N. Sandeep, Combined influence of viscous dissipation and non-uniform heat source/sink on MHD non-Newtonian fluid flow with Cattaneo-Christov heat flux, Alex. Eng. J. (2017).
DOI: 10.1016/j.aej.2017.01.026
Google Scholar
[41]
G. Mahanta, S. Shaw, 3D Casson fluid flow past a porous linearly stretching sheet with convective boundary conditions, Alex. Eng. J. 54 (2015) 653-659.
DOI: 10.1016/j.aej.2015.04.014
Google Scholar
[42]
M.G. Reddy, N. Sandeep, Heat and Mass transfer in radiative MHD Carreau fluid with cross-diffusion, Ain Shams Eng. J. (2016) https: /dx. doi. org/10. 1016/j. asej. 2016. 06. 0212.
DOI: 10.1016/j.asej.2016.06.012
Google Scholar
[43]
T. Hayat, M. Imtiaz, A. Alsaedi, MHD 3D flow of nanofluid in presence of convective conditions, J. Mol. Liq. (2015) 203-208.
DOI: 10.1016/j.molliq.2015.09.012
Google Scholar
[44]
A. Muhammad and O.D. Makinde, Thermodynamics analysis of unsteady MHD mixed convection with slip and thermal radiation over a permeable surface, Defect and Diffusion Forum 374 (2017) 29-46.
DOI: 10.4028/www.scientific.net/ddf.374.29
Google Scholar
[45]
O.D. Makinde, N. Sandeep, I.L. Animasaun and M.S. Tshehla, Numerical exploration of Cattaneo-Christov heat flux and mass transfer in magnetohydrodynamic flow over various geometries, Defect and Diffusion Forum 374 (2017) 67-82.
DOI: 10.4028/www.scientific.net/ddf.374.67
Google Scholar