Synthesis and Characterization of CeO2 Powders by Thermal Assist Process

Article Preview

Abstract:

CeO2 nanoparticles were synthesized through the solvothermal process. It is observed that the water/ethanol mixed solvents were strongly influenced on the agglomeration. The average size of CeO2 nanoparticles was about in the range of 11-13nm and its distribution was narrow. With the increase of the ethanol composition, the surface area of CeO2 was increased from 65.384m2/g to 84.649m2/g. The synthesized nanoparticles components, particle size, morphology and surface area were characterized by EDS, XRD, FE-SEM, FE-TEM and BET.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-97

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Jasinski, T. Suzuki and H. U. Anderson: Sens. Actuators, B, Vol. 95 (2003), p.73.

Google Scholar

[2] H. Yahiro, K. Eguchi and H. Arai: Solid State Ionics, Vol. 36 (1989), p.71.

Google Scholar

[3] K. Eguchi, T. Setoguchi, T. Inoue and H. Arai: Solid State Ionics, Vol. 52 (1992), p.165.

Google Scholar

[4] W. C. Maskell and B. C. H. Steele: J. Appl. Electrochem, Vol. 16 (1986), p.475.

Google Scholar

[5] S. Yabe and T. Sato: J. Solid State Chem, Vol. 171 (2003), p.7.

Google Scholar

[6] A. Tsoga, A. Gupta, A. Naoumidis and P. Nikolopoulos: Acta Mater, Vol. 48 (2000), p.4709.

Google Scholar

[7] L. M. Cook: J. Non-Cryst. Solids, Vol. 120 (1990), p.152.

Google Scholar

[8] A. B. Kehoe, D. O. Scanlon and G. W. Watson: Chem. Mater, Vol. 23 (2011), p.4464.

Google Scholar

[9] A. Trovarelli, F. Zamar, J. Llorca, C. D. Leitenburg, G. Dolcetti and J. T. Kiss: J. Catal, Vol. 169 (1997), p.490.

DOI: 10.1006/jcat.1997.1705

Google Scholar

[10] G. Kim: J. Am. Chem. Soc, Vol. 21 (1982), p.267.

Google Scholar

[11] J. Kaspar, P. Fornasiero and M. Graziani: Catal. Today, Vol. 50 (1999), p.285.

Google Scholar

[12] B. M. Reddy, P. Bharali, P. Saikia, A. Khan, S. Loridant, M. Muhler and W. Grunert: J. Phys. Chem. C, Vol. 111 (2007), p.1878.

Google Scholar

[13] A. V. Thorat, T. Ghoshal, P. Carolan, J. D. Holmes and M. A. Morris: J. Phys. Chem. C, Vol. 118 (2014), p.10700.

Google Scholar

[14] N. Phonthammachai, M. Rumruangwong, E. Gulari, A. M. Jamieson, S. Jitkarnka and S. Wongkasemjit: Colloids Surf., A, Vol. 247 (2004), p.61.

DOI: 10.1016/j.colsurfa.2004.08.030

Google Scholar

[15] N. Uekawa, M. Ueta, Y. J. Wu and K. Kakegawa: Chem. Lett, Vol. 31 (2002), p.854.

Google Scholar

[16] M. Alifanti, B. Baps, N. Blangenois, J. Naud, P. Grange, and B. Delmon: Chem. Mater, Vol. 15 (2003), p.395.

DOI: 10.1021/cm021274j

Google Scholar

[17] H. Xiao, Z. Ai and L. Zhang: J. Phys. Chem. C, Vol. 113 (2009), p.16625.

Google Scholar

[18] F. Gu, S. F. Wang, M. K. Lu, G. J. Zhou, D. Xu and D. R. Yuan: J. Phys. Chem. B, Vol. 108 (2004), p.8119.

Google Scholar

[19] A. Bumajdad, M. I. Zaki, J. Eastoe and L. Pasupulety: Langmuir, Vol. 20 (2004), p.11223.

Google Scholar

[20] Y. He, B. Yang and G. Cheng: Mater. Lett, Vol. 57 (2003), p.1880.

Google Scholar

[21] V. D. Kosynkin, A. A. Arzgatkina, E. N. Ivanov, M. G. Chtoutsa, A. I. Grabko, A. V. Kardapolov and N.A. Sysina: J. Alloys Compd, Vol. 303-304 (2000), p.421.

DOI: 10.1016/s0925-8388(00)00651-4

Google Scholar

[22] C. Karunakaran and P. Gomathisankar: ACS Sustainable Chem. Eng, Vol. 12 (2013), p.1555.

Google Scholar

[23] Y. W. Zhang, R. Si, C. S. Liao and C. H. Yan: J. Phys. Chem. B, Vol. 107 (2003), p.10159.

Google Scholar

[24] S. H. Yu: J. Ceram. Soc. Jpn, Vol. 109 (2001) p. S65.

Google Scholar

[25] X. B. Zhao, X. H. Ji, Y. H. Zhang and B. H. Lu: J. Alloys Compd, Vol. 368 (2004), p.349.

Google Scholar

[26] C. Wang, Z. X. Deng, G. Zhang, S. Fan and Y. Li: Powder Technol, Vol. 125 (2002), p.39.

Google Scholar