Synthesis and Characterization of Y2Ti2O7 Photocatalytic Powders by Thermal Assist Process

Article Preview

Abstract:

Y2Ti2O7 nanoparticles have been synthesized by co-precipitation. Y2Ti2O7 was coated on a glass substrate. The average size of the synthesized Y2Ti2O7 particles and thickness of the coating layer can be controlled by manipulating the relative conditions. The average size of synthesized Y2Ti2O7 nanoparticles was about in the size range of 20 to 30nm with calcination temperature. The effects of synthesis parameters, such as solution pH and calcination temperature, are discussed. The synthesized Y2Ti2O7 nanoparticles were coated on glass substrates by a dip coating process.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

86-91

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Merka, D.W. Bahnemann and M. Wark: ChemCatChem Vol. 4 (2012), p.1819.

Google Scholar

[2] A. L. Linsebigler, G. Lu and J.T. Yates Jr: Chem. Rev Vol. 95 (1995), p.735.

Google Scholar

[3] S. Ikeda, M. Fubuki, Y. K. Takahara and M. Matsumura: Appl. Catal., A Vol. 300 (2006), p.186.

Google Scholar

[4] L. F. He, J. Shirahata, T. Nakayama, T. Suzuki, H. Suematsu, I. Ihara, Y. W. Bao, T. Komatsud and K. Niiharaa: Scripta Mater Vol. 64 (2011), p.548.

DOI: 10.1016/j.scriptamat.2010.11.042

Google Scholar

[5] N. Sellami, G. Sattonnay, C. Grygiel, I. Monnet, A. Debelle, C. Legros, D. Menut, S. Miro, P. Simon, J. L Bechade and L. Thomé: Nucl. Instrum. Methods Phys. Res., Sect. B Vol. 365 (2015), p.317.

DOI: 10.1016/j.nimb.2015.07.017

Google Scholar

[6] P. Holtappels, F. W. Poulsen and M. Mogensen: Solid State Ionics Vol. 135 (2000), p.675.

Google Scholar

[7] M. B. Johnson, D. D. James, A. Bourque, H. A. Dabkowska, B. D. Gaulin and M. A. White: J. Solid State Chem Vol. 182 (2009), p.725.

Google Scholar

[8] J. K. Gill, O. P. Pandey and K. Singh: Solid State Sciences Vol. 13 (2011), p. (1960).

Google Scholar

[9] R. Abe, M. Higashi, K. Sayama, Y. Abe and H. Sugihara, J. Phys: Chem. B Vol. 110 (2006), p.2219.

Google Scholar

[10] G. Ravi, S. Mansouri, S. Palla and M. Vithal: Indian J. Chem Vol. 54 (2015), p.20.

Google Scholar

[11] S. Pace, V. Cannillo, J. Wu, D. N. Boccaccini, S. Seglem and A. R. Boccaccini: J. Nucl. Mater Vol. 341 (2005), p.12.

DOI: 10.1016/j.jnucmat.2005.01.005

Google Scholar

[12] R. C. Ewing, W. J. Weber and J. Lian: J. Appl. Phys Vol. 95 (2004), p.5949.

Google Scholar

[13] N. Pailhe´, M. Gaudon and A. Demourgues: Mater. Res. Bull Vol. 44 (2009), p.1771.

Google Scholar

[14] S. Ishida, F. Ren and N. Takeuchi: J. Am. Ceram. Soc Vol. 76 (1993), p.2644.

Google Scholar

[15] Z. Chen, W. Gong, T. Chen, S. Li, D. Wang and Q. Wang: Mater. Lett Vol. 68 (2012), p.137.

Google Scholar

[16] E. Pavitra, G. S. R. Raju and J. S. Yu, P hys: Status Solidi RRL Vol. 3 (2013), p.224.

Google Scholar

[17] L. G. Shcherbakova, J. C. C. Abrantes, D. A. Belova, E. A. Nesterova, O. K. Karyagina and A. V. Shlyakhtina: Solid State Ionics Vol. 261(2014), p.131.

DOI: 10.1016/j.ssi.2014.01.019

Google Scholar

[18] B. J. Wuensch, K. W. Eberman, C. Heremans, E. M. Ku, P. Onnerud, E. M. E. Yeo, S. M. Haile, J. K. Stalick and J. D. Jorgensen: Solid State Ionics Vol. 129 (2000), p.111.

Google Scholar

[19] T. Liu, L. Wang, C. Wang, H. Shen and H. Zhang: Mater. Des Vol. 88 (2015), p.862.

Google Scholar

[20] C. L. Chen and Y. Zeng: Int. J. Refract. Met. Hard Mater Vol. 56 (2016), p.104.

Google Scholar

[21] M. Ebrahimi, D. Willershausen, K. S. Ashaghi, L. Engel, L. Placido, P. Mund, P. Bolduan and P. Czermak: Desalination Vol. 250 (2010), p.991.

DOI: 10.1016/j.desal.2009.09.088

Google Scholar

[22] L. Liu, C. Zhao and F. Yang: Water Res Vol. 46 (2012), p. (1969).

Google Scholar

[23] A.F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza and U. Amador: Solid State Sciences Vol. 7 (2005), p.343.

DOI: 10.1016/j.solidstatesciences.2005.01.002

Google Scholar

[24] J. K. Gill, O. P. Pandey and K. Singh: Solid State Sciences Vol. 13 (2011), p. (1960).

Google Scholar

[25] A. F. Fuentes, K. Boulahya, M. Maczka, J. Hanuza and U. Amador: Solid State Sciences Vol. 7 (2005), p.343.

DOI: 10.1016/j.solidstatesciences.2005.01.002

Google Scholar

[26] A. L. Hector and S. B. Wiggin: J. Solid State Chem Vol. 177 (2004), p.139.

Google Scholar

[27] Z. S. Chen, W. P. Gong, T. F. Chen and S. L. Li: Bull. Mater. Sci Vol. 34 (2011), p.429.

Google Scholar

[28] X. Changrong, C. Huaqiang, W. Hong, Y. pinghua, M, Guangyao and P. Dingkun: J. Membr. Sci Vol. 162 (1999), p.181.

Google Scholar

[29] K. M. Lin, C. C. Lin, C. Y. Hsiao and Y. Y. Li: J. Lumin Vol. 127 (2007), p.561.

Google Scholar

[30] Y. Zhang, M. Wang, Z. Le, G. Huang and L. Zou and Z. Chen: Ceram. Int Vol. 40 (2014), p.5223.

Google Scholar