Effect of Sintering Method on the Properties of Quartz Porous Ceramics

Article Preview

Abstract:

The sintering methods of quartz sand porous ceramics were researched with the low grade quartz sand along the Yangtze River via the vacuum sintering method in this paper, which lay technology foundation for researching new heat insulating materials. The quartz porous ceramics is obtained with the high performance cost, the quartz porous ceramics is sintered at 1050°C via the vacuum conditions, the density of ceramics is 1.267g/cm3, the porosity is 51.6%, the compressive strength is 3.184MPa, the porous ceramics show the homogeneous distribution micro-pore and good shape. The density and the compressive strength of prepared ceramics via the vacuum sintering both are higher than that of prepared ceramics via the atmosphere sintering, however, the porosity is shown the opposite results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-56

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Wiemes, U. Pawlowsky, V. Mymrin, Incorporation of industrial wastes as raw materials in brick's formulation, J. Clean. Prod. 142 (2017) 69-77.

DOI: 10.1016/j.jclepro.2016.06.174

Google Scholar

[2] H.B. Wang, L.X. Ma, L. Li, B. Zhang, Fabrication of Fe-based bulk metallic glasses from low-purity industrial raw materials, J. Alloy. Compd. 629 (2015) 1-4.

DOI: 10.1016/j.jallcom.2014.11.228

Google Scholar

[3] A. Harabi, S. Kasrani, L. Foughali, I. Serradj, M.T. Benhassine, S. Kitouni, Effect of TiO2 additions on densification and mechanical properties of new mulltifunction resistant porcelains using economic raw materials, Ceram. Int. 43 (2017).

DOI: 10.1016/j.ceramint.2017.01.081

Google Scholar

[4] I. Gonzalez, P. Campos, C.B. Brioso, A. Romero, E. Galan, E. Mayoral, A proposal for the formulation of high-quality ceramic green, materials with traditional raw materials mixed with Al-clays, Appl. Clay Sci. 131 (2016) 113-123.

DOI: 10.1016/j.clay.2015.12.035

Google Scholar

[5] S. Platias, K.I. Vatalis, G. Charalampides, Suitability of quartz sands for different industrial applications, Proc. Econ. Finan. 14 (2014) 491-498.

DOI: 10.1016/s2212-5671(14)00738-2

Google Scholar

[6] S.F. Wen, Q.W. Shen, Q.S. Wei, C.Z. Yan, W. Zhu, Y.S. Shi, J.S. Yang, Y.S. Shi, Material optimization and post-processing of sand moulds manufactured by the selective laser sintering of binder-coated Al2O3 sands, J. Mater. Proc. Tech. 225 (2015).

DOI: 10.1016/j.jmatprotec.2015.05.028

Google Scholar

[7] Z.Y. Liu, K. Zhao, B.L. Xiao, W.G. Wang, Z.Y. Ma, Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing, Mater. Design. 97 (2016) 424-430.

DOI: 10.1016/j.matdes.2016.02.121

Google Scholar

[8] V. Gonzalez, S.E. Taylor, Asphaltene adsorption on quartz sand in the presence of pre-adsorbed water, J. Colloid Interf. Sci. 480 (2016) 137-145.

DOI: 10.1016/j.jcis.2016.07.014

Google Scholar

[9] P. Zhang, J. Huang, Z. Shen, X. Wang, F. Luo, P. Zhang, J. Wang, S.D. Miao, Fired hollow clay bricks manufactured from black cotton soils and natural pozzolans in Kenya, Const. Build. Mater. 141 (2017) 435-441.

DOI: 10.1016/j.conbuildmat.2017.03.018

Google Scholar

[10] A. Ukwatta, A. Mohajerani, Characterisation of fired-clay bricks incorporating biosolids and the effect of heating rate on properties of bricks, Const. Build. Mater. 142 (2017) 11-22.

DOI: 10.1016/j.conbuildmat.2017.03.047

Google Scholar

[11] M.F. Zawrah, R.A. Gado, N. Feltin, S. Ducourtieux, L. Devoille, Recycling and utilization assessment of waste fired clay bricks (Grog) with granulated blast-furnace slag for geopolymer production, Process Safety Environ. Prot. 103 (2016) 237-251.

DOI: 10.1016/j.psep.2016.08.001

Google Scholar

[12] A. Mohajerani, A.A. Kadir, L. Larobina, A practical proposal for solving the world's cigarette butt problem: Recycling in fired clay bricks, Waste Manag. 52 (2016) 228-244.

DOI: 10.1016/j.wasman.2016.03.012

Google Scholar

[13] L. Han, F.L. Li, X.G. Deng, J.K. Wang, H.J. Zhang, S.W. Zhang, Foam-gelcasting preparation, microstructure and thermal insulation performance of porous diatomite ceramics with hierarchical pore structures, J. Eur. Ceram. Soc. 37 (2017) 2717-2725.

DOI: 10.1016/j.jeurceramsoc.2017.02.032

Google Scholar

[14] M. Sutcu, S. Ozturk, E. Yalamac, O. Gencel, Effect of olive mill waste addition on the properties of porous fired clay bricks using Taguchi method, J. Environ. Manag. 181 (2016) 185-192.

DOI: 10.1016/j.jenvman.2016.06.023

Google Scholar

[15] Y. Hangai, N.N. Minh, T. Morita, R. Suzuki, M. Matsubara, S. Koyama, Cutting process for aluminum foam fabricated by sintering and dissolution process, Adv. Powder Tech. 28 (2017) 1426-1429.

DOI: 10.1016/j.apt.2017.02.021

Google Scholar